Parameter
Collection of possible parameter specifications for the distribution objects.
Example choices defined:
Identity: f = x LinearCombination: f = X @ beta + Y @ gamma LinearCombinationWithTransform: f = X @ exp(beta) + Y @ gamma ScaledMatrix f = lam * P MixtureParameterVector f= X[I] MixtureParameterMatrix f= np.diag(lam[I])
Parameter
dataclass
Bases: ABC
Abstract base class for parameter.
Source code in src/openmcmc/parameter.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
predictor(state)
abstractmethod
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
30 31 32 33 34 35 36 37 38 39 40 |
|
get_param_list()
abstractmethod
Extract list of components from parameter specification.
Returns:
Type | Description |
---|---|
list
|
parameter included as part of predictor |
Source code in src/openmcmc/parameter.py
42 43 44 45 46 47 48 49 |
|
get_grad_param_list()
abstractmethod
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
51 52 53 54 55 56 57 58 |
|
grad(state, param)
abstractmethod
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
60 61 62 63 64 65 66 67 68 69 70 71 |
|
Identity
dataclass
Bases: Parameter
Class specifying a simple predictor in a single term.
Predictor has the functional form
f = x
The gradient should only be used for scalar and vector inputs
Parameters:
Name | Type | Description | Default |
---|---|---|---|
form |
str
|
string specifying the element of state which determines the parameter |
required |
Attributes:
Name | Type | Description |
---|---|---|
form |
str
|
string specifying the element of state which determines the parameter. |
Source code in src/openmcmc/parameter.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
predictor(state)
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
93 94 95 96 97 98 99 100 101 102 103 |
|
get_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
105 106 107 108 109 110 111 112 |
|
get_grad_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
114 115 116 117 118 119 120 121 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
|
LinearCombination
dataclass
Bases: Parameter
Class specifying linear combination form .
This Parameter type is typically in the mean of a Normal distribution in a linear regression type case.
Predictor has the form predictor = sum_i (value[i] @ key[i]) using the form dictionary input
Attributes:
Name | Type | Description |
---|---|---|
form |
dict
|
dict specifying the term and prefactor in the linear combination. example: {'beta': 'X', 'alpha': 'A'} produces linear combination X @ beta + A @ alpha. |
Source code in src/openmcmc/parameter.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
predictor(state)
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
162 163 164 165 166 167 168 169 170 171 172 |
|
predictor_conditional(state, term_to_exclude=None)
Extract predictor from the state dictionary using the functional form defined in the specific subclass excluding parameters.
Used when estimating conditional distributions of those parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
term_to_exclude |
Union[str, list]
|
terms to exclude from predictor |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
get_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
199 200 201 202 203 204 205 206 |
|
get_grad_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
208 209 210 211 212 213 214 215 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
217 218 219 220 221 222 223 224 225 226 227 228 |
|
LinearCombinationWithTransform
dataclass
Bases: LinearCombination
Linear combination of parameters from the state, with optional exponential transformation for the parameter elements.
Currently, the only allowed transformation is the exponential transform.
This Parameter type is typically in the mean of a Normal distribution and could be used to impose positivity of the parameters
Predictor has the form predictor = sum_i (value[i] @ transform(key[i])) using the form dictionary input
Attributes:
Name | Type | Description |
---|---|---|
transform |
dict
|
dict with logicals specifying whether exp(.) transform should be applied to parameter example: form={'beta': X}, transform={'beta': True} will produce X @ np.exp(beta) |
Source code in src/openmcmc/parameter.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
predictor_conditional(state, term_to_exclude=None)
Extract predictor from the state dictionary using the functional form defined in the specific subclass excluding parameters.
Used when estimating conditional distributions of those parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
term_to_exclude |
list
|
terms to exclude from predictor |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
ScaledMatrix
dataclass
Bases: Parameter
Defines parameter a scalar factor in front of a matrix.
This is often used in case where we have a scalar variance in front of an unscaled precision matrix. Where we have a gamma distribution for the scalar parameter which wish to estimate
Linear combinations have the form
predictor = scalar * matrix
Attributes:
Name | Type | Description |
---|---|---|
matrix |
str
|
variable name of the un-scaled matrix |
scalar |
str
|
variable name of the scalar term |
Source code in src/openmcmc/parameter.py
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
|
predictor(state)
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
319 320 321 322 323 324 325 326 327 328 329 |
|
get_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
331 332 333 334 335 336 337 338 |
|
get_grad_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
340 341 342 343 344 345 346 347 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
349 350 351 352 353 354 355 356 357 358 359 360 |
|
precision_unscaled(state, _)
Return the precision matrix un-scaled by the scalar precision parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
state dictionary |
required |
_ |
int
|
argument unused but matches with version in MixtureParameterMatrix where element is needed |
required |
Returns:
Type | Description |
---|---|
ndarray
|
unscaled precision matrix |
Source code in src/openmcmc/parameter.py
362 363 364 365 366 367 368 369 370 371 372 373 |
|
MixtureParameter
dataclass
Bases: Parameter
, ABC
Abstract Parameter class for a mixture distribution.
Subclasses implemented for both:
- vector-valued parameter (MixtureParameterVector)
- diagonal matrix-valued parameter (MixtureParameterMatrix) where the elements of the vector or matrix diagonal are allocated based on the allocation parameter.
Source code in src/openmcmc/parameter.py
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
|
get_element_match(state, element_index)
Extract the parts of self.allocation which have given element number.
used in the gradient function to pull out gradient for given element.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
state vector |
required |
element_index |
(int, array)
|
element index or set of integers |
required |
Returns:
Type | Description |
---|---|
array(dtype=int)
|
element matches with 1 where there is a match and 0 where there isn't |
Source code in src/openmcmc/parameter.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
get_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
410 411 412 413 414 415 416 417 |
|
MixtureParameterVector
dataclass
Bases: MixtureParameter
Vector parameter: elements of the vector are obtained from sub-parameter 'param' according to the allocation.
The allocation parameter defines a mapping between a R^m and R^n where typically m<=n and m is the number true underlying number of parameters in the model but due to the representation/algebra in other parts of the model this is expanded out to an n parameter model where the values of m are copied according to the index vector
predictor = param [allocation]
Attributes:
Name | Type | Description |
---|---|---|
param |
str
|
name of underlying state component used to generate parameter. |
allocation |
ndarray
|
name of allocation parameter within state dict. |
Source code in src/openmcmc/parameter.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
predictor(state)
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
ndarray
|
predictor vector |
Source code in src/openmcmc/parameter.py
437 438 439 440 441 442 443 444 445 446 447 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
get_grad_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
464 465 466 467 468 469 470 471 |
|
MixtureParameterMatrix
dataclass
Bases: MixtureParameter
Diagonal matrix parameter: elements of the diagonal are obtained from sub-parameter 'param' according to the allocation index vector.
The allocation parameter defines a mapping between a R^m and R^n where typically m<=n and m is the number true underlying number of parameters in the model but due to the representation/algebra in other parts of the model this is expanded out to an n parameter model where the values of m are copied according to the index vector
predictor = np.diag( param [allocation] )
Attributes:
Name | Type | Description |
---|---|---|
param |
str
|
name of underlying state component used to generate parameter. |
allocation |
ndarray
|
name of allocation parameter within state dict. |
Source code in src/openmcmc/parameter.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
|
predictor(state)
Create predictor from the state dictionary using the functional form defined in the specific subclass.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
dictionary object containing the current state information |
required |
Returns:
Type | Description |
---|---|
csc_matrix
|
predictor vector |
Source code in src/openmcmc/parameter.py
491 492 493 494 495 496 497 498 499 500 501 |
|
grad(state, param)
Compute gradient of single parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
Dictionary object containing the current state information |
required |
param |
str
|
Compute derivatives WRT this variable |
required |
Returns:
Type | Description |
---|---|
ndarray
|
[n_param x n_data] array, gradient with respect to param |
Source code in src/openmcmc/parameter.py
503 504 505 506 507 508 509 510 511 512 513 514 |
|
get_grad_param_list()
Extract list of components from parameter specification that grad is defined for.
Returns:
Type | Description |
---|---|
list
|
parameter that grad is defined for. |
Source code in src/openmcmc/parameter.py
516 517 518 519 520 521 522 523 |
|
precision_unscaled(state, element_index)
Return the precision matrix un-scaled by the scalar precision parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state |
dict
|
state dictionary |
required |
element_index |
int
|
index of element to subset |
required |
Returns:
Type | Description |
---|---|
ndarray
|
unscaled precision matrix |
Source code in src/openmcmc/parameter.py
525 526 527 528 529 530 531 532 533 534 535 536 |
|