Skip to content

Source Model

Component Class and subclasses for source model.

A SourceModel instance inherits from 3 super-classes
  • Component: this is the general superclass for ELQModel components, which prototypes generic methods.
  • A type of SourceGrouping: this class type implements an allocation of sources to different categories (e.g. slab or spike), and sets up a sampler for estimating the classification of each source within the source map. Inheriting from the NullGrouping class ensures that the allocation of all sources is fixed during the inversion, and is not updated.
  • A type of SourceDistribution: this class type implements a particular type of response distribution (mostly Normal, but also allows for cases where we have e.g. exp(log_s) or a non-Gaussian prior).

SourceGrouping dataclass

Superclass for source grouping approach.

Source grouping method determines the group allocation of each source in the model, e.g: slab and spike distribution makes an on/off allocation for each source.

Attributes:

Name Type Description
nof_sources int

number of sources in the model.

emission_rate_mean Union[float, ndarray]

prior mean parameter for the emission rate distribution.

_source_key str

label for the source parameter to be used in the distributions, samplers, MCMC state etc.

Source code in src/pyelq/component/source_model.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
@dataclass
class SourceGrouping:
    """Superclass for source grouping approach.

    Source grouping method determines the group allocation of each source in the model, e.g: slab and spike
    distribution makes an on/off allocation for each source.

    Attributes:
        nof_sources (int): number of sources in the model.
        emission_rate_mean (Union[float, np.ndarray]): prior mean parameter for the emission rate distribution.
        _source_key (str): label for the source parameter to be used in the distributions, samplers, MCMC state etc.

    """

    nof_sources: int = field(init=False)
    emission_rate_mean: Union[float, np.ndarray] = field(init=False)
    _source_key: str = field(init=False, default="s")

    @abstractmethod
    def make_allocation_model(self, model: list) -> list:
        """Initialise the source allocation part of the model, and the parameters of the source response distribution.

        Args:
            model (list): overall model, consisting of list of distributions.

        Returns:
            list: overall model list, updated with allocation distribution.

        """

    @abstractmethod
    def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
        """Initialise the allocation part of the sampler.

        Args:
            model (Model): overall model, consisting of list of distributions.
            sampler_list (list): list of samplers for individual parameters.

        Returns:
            list: sampler_list updated with sampler for the source allocation.

        """

    @abstractmethod
    def make_allocation_state(self, state: dict) -> dict:
        """Initialise the allocation part of the state.

        Args:
            state (dict): dictionary containing current state information.

        Returns:
            dict: state updated with parameters related to the source grouping.

        """

    @abstractmethod
    def from_mcmc_group(self, store: dict):
        """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

        Args:
            store (dict): dictionary containing samples from the MCMC.

        """

make_allocation_model(model) abstractmethod

Initialise the source allocation part of the model, and the parameters of the source response distribution.

Parameters:

Name Type Description Default
model list

overall model, consisting of list of distributions.

required

Returns:

Name Type Description
list list

overall model list, updated with allocation distribution.

Source code in src/pyelq/component/source_model.py
63
64
65
66
67
68
69
70
71
72
73
@abstractmethod
def make_allocation_model(self, model: list) -> list:
    """Initialise the source allocation part of the model, and the parameters of the source response distribution.

    Args:
        model (list): overall model, consisting of list of distributions.

    Returns:
        list: overall model list, updated with allocation distribution.

    """

make_allocation_sampler(model, sampler_list) abstractmethod

Initialise the allocation part of the sampler.

Parameters:

Name Type Description Default
model Model

overall model, consisting of list of distributions.

required
sampler_list list

list of samplers for individual parameters.

required

Returns:

Name Type Description
list list

sampler_list updated with sampler for the source allocation.

Source code in src/pyelq/component/source_model.py
75
76
77
78
79
80
81
82
83
84
85
86
@abstractmethod
def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
    """Initialise the allocation part of the sampler.

    Args:
        model (Model): overall model, consisting of list of distributions.
        sampler_list (list): list of samplers for individual parameters.

    Returns:
        list: sampler_list updated with sampler for the source allocation.

    """

make_allocation_state(state) abstractmethod

Initialise the allocation part of the state.

Parameters:

Name Type Description Default
state dict

dictionary containing current state information.

required

Returns:

Name Type Description
dict dict

state updated with parameters related to the source grouping.

Source code in src/pyelq/component/source_model.py
88
89
90
91
92
93
94
95
96
97
98
@abstractmethod
def make_allocation_state(self, state: dict) -> dict:
    """Initialise the allocation part of the state.

    Args:
        state (dict): dictionary containing current state information.

    Returns:
        dict: state updated with parameters related to the source grouping.

    """

from_mcmc_group(store) abstractmethod

Extract posterior allocation samples from the MCMC sampler, attach them to the class.

Parameters:

Name Type Description Default
store dict

dictionary containing samples from the MCMC.

required
Source code in src/pyelq/component/source_model.py
100
101
102
103
104
105
106
107
@abstractmethod
def from_mcmc_group(self, store: dict):
    """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

    Args:
        store (dict): dictionary containing samples from the MCMC.

    """

NullGrouping dataclass

Bases: SourceGrouping

Null grouping: the grouping of the sources will not change during the course of the inversion.

Note that this is intended to support two distinct cases

1) The case where the source map is fixed, and a given prior mean and prior precision value are assigned to each source (can be a common value for all sources, or can be a distinct allocation to each element of the source map). 2) The case where the dimensionality of the source map is changing during the inversion, and a common prior mean and precision term are used for all sources.

Source code in src/pyelq/component/source_model.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
@dataclass
class NullGrouping(SourceGrouping):
    """Null grouping: the grouping of the sources will not change during the course of the inversion.

    Note that this is intended to support two distinct cases:
        1) The case where the source map is fixed, and a given prior mean and prior precision value are assigned to
            each source (can be a common value for all sources, or can be a distinct allocation to each element of the
            source map).
        2) The case where the dimensionality of the source map is changing during the inversion, and a common prior
            mean and precision term are used for all sources.

    """

    def make_allocation_model(self, model: list) -> list:
        """Initialise the source allocation part of the model.

        In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply
        returns the existing model un-modified).

        Args:
            model (list): model as constructed so far, consisting of list of distributions.

        Returns:
            list: overall model list, updated with allocation distribution.

        """
        return model

    def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
        """Initialise the allocation part of the sampler.

        In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply
        returns the existing sampler list un-modified).

        Args:
            model (Model): overall model set for the problem.
            sampler_list (list): list of samplers for individual parameters.

        Returns:
            list: sampler_list updated with sampler for the source allocation.

        """
        return sampler_list

    def make_allocation_state(self, state: dict) -> dict:
        """Initialise the allocation part of the state.

        The prior mean parameter and the fixed source allocation are added to the state.

        Args:
            state (dict): dictionary containing current state information.

        Returns:
            dict: state updated with parameters related to the source grouping.

        """
        state["mu_s"] = np.array(self.emission_rate_mean, ndmin=1)
        state["alloc_s"] = np.zeros((self.nof_sources, 1), dtype="int")
        return state

    def from_mcmc_group(self, store: dict):
        """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

        We have not implemented anything here as there is nothing to fetch from the MCMC solution here for the
        NullGrouping Class.

        Args:
            store (dict): dictionary containing samples from the MCMC.

        """

make_allocation_model(model)

Initialise the source allocation part of the model.

In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply returns the existing model un-modified).

Parameters:

Name Type Description Default
model list

model as constructed so far, consisting of list of distributions.

required

Returns:

Name Type Description
list list

overall model list, updated with allocation distribution.

Source code in src/pyelq/component/source_model.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def make_allocation_model(self, model: list) -> list:
    """Initialise the source allocation part of the model.

    In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply
    returns the existing model un-modified).

    Args:
        model (list): model as constructed so far, consisting of list of distributions.

    Returns:
        list: overall model list, updated with allocation distribution.

    """
    return model

make_allocation_sampler(model, sampler_list)

Initialise the allocation part of the sampler.

In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply returns the existing sampler list un-modified).

Parameters:

Name Type Description Default
model Model

overall model set for the problem.

required
sampler_list list

list of samplers for individual parameters.

required

Returns:

Name Type Description
list list

sampler_list updated with sampler for the source allocation.

Source code in src/pyelq/component/source_model.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
    """Initialise the allocation part of the sampler.

    In the NullGrouping case, the source allocation is fixed throughout, so this function does nothing (simply
    returns the existing sampler list un-modified).

    Args:
        model (Model): overall model set for the problem.
        sampler_list (list): list of samplers for individual parameters.

    Returns:
        list: sampler_list updated with sampler for the source allocation.

    """
    return sampler_list

make_allocation_state(state)

Initialise the allocation part of the state.

The prior mean parameter and the fixed source allocation are added to the state.

Parameters:

Name Type Description Default
state dict

dictionary containing current state information.

required

Returns:

Name Type Description
dict dict

state updated with parameters related to the source grouping.

Source code in src/pyelq/component/source_model.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def make_allocation_state(self, state: dict) -> dict:
    """Initialise the allocation part of the state.

    The prior mean parameter and the fixed source allocation are added to the state.

    Args:
        state (dict): dictionary containing current state information.

    Returns:
        dict: state updated with parameters related to the source grouping.

    """
    state["mu_s"] = np.array(self.emission_rate_mean, ndmin=1)
    state["alloc_s"] = np.zeros((self.nof_sources, 1), dtype="int")
    return state

from_mcmc_group(store)

Extract posterior allocation samples from the MCMC sampler, attach them to the class.

We have not implemented anything here as there is nothing to fetch from the MCMC solution here for the NullGrouping Class.

Parameters:

Name Type Description Default
store dict

dictionary containing samples from the MCMC.

required
Source code in src/pyelq/component/source_model.py
170
171
172
173
174
175
176
177
178
179
def from_mcmc_group(self, store: dict):
    """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

    We have not implemented anything here as there is nothing to fetch from the MCMC solution here for the
    NullGrouping Class.

    Args:
        store (dict): dictionary containing samples from the MCMC.

    """

SlabAndSpike dataclass

Bases: SourceGrouping

Slab and spike source model, special case for the source grouping.

Slab and spike: the prior for the emission rates is a two-component mixture, and the allocation is to be estimated as part of the inversion.

Attributes:

Name Type Description
slab_probability float

prior probability of allocation to the slab component. Defaults to 0.05.

allocation ndarray

set of allocation samples, with shape=(n_sources, n_iterations). Attached to the class by self.from_mcmc_group().

Source code in src/pyelq/component/source_model.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
@dataclass
class SlabAndSpike(SourceGrouping):
    """Slab and spike source model, special case for the source grouping.

    Slab and spike: the prior for the emission rates is a two-component mixture, and the allocation is to be
    estimated as part of the inversion.

    Attributes:
        slab_probability (float): prior probability of allocation to the slab component. Defaults to 0.05.
        allocation (np.ndarray): set of allocation samples, with shape=(n_sources, n_iterations). Attached to
            the class by self.from_mcmc_group().

    """

    slab_probability: float = 0.05
    allocation: np.ndarray = field(init=False)

    def make_allocation_model(self, model: list) -> list:
        """Initialise the source allocation part of the model.

        Args:
            model (list): model as constructed so far, consisting of list of distributions.

        Returns:
            list: overall model list, updated with allocation distribution.

        """
        model.append(Categorical("alloc_s", prob="s_prob"))
        return model

    def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
        """Initialise the allocation part of the sampler.

        Args:
            model (Model): overall model set for the problem.
            sampler_list (list): list of samplers for individual parameters.

        Returns:
            list: sampler_list updated with sampler for the source allocation.

        """
        sampler_list.append(MixtureAllocation(param="alloc_s", model=model, response_param=self._source_key))
        return sampler_list

    def make_allocation_state(self, state: dict) -> dict:
        """Initialise the allocation part of the state.

        Args:
            state (dict): dictionary containing current state information.

        Returns:
            dict: state updated with parameters related to the source grouping.

        """
        state["mu_s"] = np.array(self.emission_rate_mean, ndmin=1)
        state["s_prob"] = np.tile(np.array([self.slab_probability, 1 - self.slab_probability]), (self.nof_sources, 1))
        state["alloc_s"] = np.ones((self.nof_sources, 1), dtype="int")
        return state

    def from_mcmc_group(self, store: dict):
        """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

        Args:
            store (dict): dictionary containing samples from the MCMC.

        """
        self.allocation = store["alloc_s"]

make_allocation_model(model)

Initialise the source allocation part of the model.

Parameters:

Name Type Description Default
model list

model as constructed so far, consisting of list of distributions.

required

Returns:

Name Type Description
list list

overall model list, updated with allocation distribution.

Source code in src/pyelq/component/source_model.py
199
200
201
202
203
204
205
206
207
208
209
210
def make_allocation_model(self, model: list) -> list:
    """Initialise the source allocation part of the model.

    Args:
        model (list): model as constructed so far, consisting of list of distributions.

    Returns:
        list: overall model list, updated with allocation distribution.

    """
    model.append(Categorical("alloc_s", prob="s_prob"))
    return model

make_allocation_sampler(model, sampler_list)

Initialise the allocation part of the sampler.

Parameters:

Name Type Description Default
model Model

overall model set for the problem.

required
sampler_list list

list of samplers for individual parameters.

required

Returns:

Name Type Description
list list

sampler_list updated with sampler for the source allocation.

Source code in src/pyelq/component/source_model.py
212
213
214
215
216
217
218
219
220
221
222
223
224
def make_allocation_sampler(self, model: Model, sampler_list: list) -> list:
    """Initialise the allocation part of the sampler.

    Args:
        model (Model): overall model set for the problem.
        sampler_list (list): list of samplers for individual parameters.

    Returns:
        list: sampler_list updated with sampler for the source allocation.

    """
    sampler_list.append(MixtureAllocation(param="alloc_s", model=model, response_param=self._source_key))
    return sampler_list

make_allocation_state(state)

Initialise the allocation part of the state.

Parameters:

Name Type Description Default
state dict

dictionary containing current state information.

required

Returns:

Name Type Description
dict dict

state updated with parameters related to the source grouping.

Source code in src/pyelq/component/source_model.py
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def make_allocation_state(self, state: dict) -> dict:
    """Initialise the allocation part of the state.

    Args:
        state (dict): dictionary containing current state information.

    Returns:
        dict: state updated with parameters related to the source grouping.

    """
    state["mu_s"] = np.array(self.emission_rate_mean, ndmin=1)
    state["s_prob"] = np.tile(np.array([self.slab_probability, 1 - self.slab_probability]), (self.nof_sources, 1))
    state["alloc_s"] = np.ones((self.nof_sources, 1), dtype="int")
    return state

from_mcmc_group(store)

Extract posterior allocation samples from the MCMC sampler, attach them to the class.

Parameters:

Name Type Description Default
store dict

dictionary containing samples from the MCMC.

required
Source code in src/pyelq/component/source_model.py
241
242
243
244
245
246
247
248
def from_mcmc_group(self, store: dict):
    """Extract posterior allocation samples from the MCMC sampler, attach them to the class.

    Args:
        store (dict): dictionary containing samples from the MCMC.

    """
    self.allocation = store["alloc_s"]

SourceDistribution dataclass

Superclass for source emission rate distribution.

Source distribution determines the type of prior to be used for the source emission rates, and the transformation linking the source parameters and the data.

Elements related to transformation of source parameters are also specified at the model level.

Attributes:

Name Type Description
nof_sources int

number of sources in the model.

emission_rate ndarray

set of emission rate samples, with shape=(n_sources, n_iterations). Attached to the class by self.from_mcmc_dist().

Source code in src/pyelq/component/source_model.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
@dataclass
class SourceDistribution:
    """Superclass for source emission rate distribution.

    Source distribution determines the type of prior to be used for the source emission rates, and the transformation
    linking the source parameters and the data.

    Elements related to transformation of source parameters are also specified at the model level.

    Attributes:
        nof_sources (int): number of sources in the model.
        emission_rate (np.ndarray): set of emission rate samples, with shape=(n_sources, n_iterations). Attached to
            the class by self.from_mcmc_dist().

    """

    nof_sources: int = field(init=False)
    emission_rate: np.ndarray = field(init=False)

    @abstractmethod
    def make_source_model(self, model: list) -> list:
        """Add distributional component to the overall model corresponding to the source emission rate distribution.

        Args:
            model (list): model as constructed so far, consisting of list of distributions.

        Returns:
            list: overall model list, updated with distributions related to source prior.

        """

    @abstractmethod
    def make_source_sampler(self, model: Model, sampler_list: list) -> list:
        """Initialise the source prior distribution part of the sampler.

        Args:
            model (Model): overall model set for the problem.
            sampler_list (list): list of samplers for individual parameters.

        Returns:
            list: sampler_list updated with sampler for the emission rate parameters.

        """

    @abstractmethod
    def make_source_state(self, state: dict) -> dict:
        """Initialise the emission rate parts of the state.

        Args:
            state (dict): dictionary containing current state information.

        Returns:
            dict: state updated with parameters related to the source emission rates.

        """

    @abstractmethod
    def from_mcmc_dist(self, store: dict):
        """Extract posterior emission rate samples from the MCMC, attach them to the class.

        Args:
            store (dict): dictionary containing samples from the MCMC.

        """

make_source_model(model) abstractmethod

Add distributional component to the overall model corresponding to the source emission rate distribution.

Parameters:

Name Type Description Default
model list

model as constructed so far, consisting of list of distributions.

required

Returns:

Name Type Description
list list

overall model list, updated with distributions related to source prior.

Source code in src/pyelq/component/source_model.py
270
271
272
273
274
275
276
277
278
279
280
@abstractmethod
def make_source_model(self, model: list) -> list:
    """Add distributional component to the overall model corresponding to the source emission rate distribution.

    Args:
        model (list): model as constructed so far, consisting of list of distributions.

    Returns:
        list: overall model list, updated with distributions related to source prior.

    """

make_source_sampler(model, sampler_list) abstractmethod

Initialise the source prior distribution part of the sampler.

Parameters:

Name Type Description Default
model Model

overall model set for the problem.

required
sampler_list list

list of samplers for individual parameters.

required

Returns:

Name Type Description
list list

sampler_list updated with sampler for the emission rate parameters.

Source code in src/pyelq/component/source_model.py
282
283
284
285
286
287
288
289
290
291
292
293
@abstractmethod
def make_source_sampler(self, model: Model, sampler_list: list) -> list:
    """Initialise the source prior distribution part of the sampler.

    Args:
        model (Model): overall model set for the problem.
        sampler_list (list): list of samplers for individual parameters.

    Returns:
        list: sampler_list updated with sampler for the emission rate parameters.

    """

make_source_state(state) abstractmethod

Initialise the emission rate parts of the state.

Parameters:

Name Type Description Default
state dict

dictionary containing current state information.

required

Returns:

Name Type Description
dict dict

state updated with parameters related to the source emission rates.

Source code in src/pyelq/component/source_model.py
295
296
297
298
299
300
301
302
303
304
305
@abstractmethod
def make_source_state(self, state: dict) -> dict:
    """Initialise the emission rate parts of the state.

    Args:
        state (dict): dictionary containing current state information.

    Returns:
        dict: state updated with parameters related to the source emission rates.

    """

from_mcmc_dist(store) abstractmethod

Extract posterior emission rate samples from the MCMC, attach them to the class.

Parameters:

Name Type Description Default
store dict

dictionary containing samples from the MCMC.

required
Source code in src/pyelq/component/source_model.py
307
308
309
310
311
312
313
314
@abstractmethod
def from_mcmc_dist(self, store: dict):
    """Extract posterior emission rate samples from the MCMC, attach them to the class.

    Args:
        store (dict): dictionary containing samples from the MCMC.

    """

NormalResponse dataclass

Bases: SourceDistribution

(Truncated) Gaussian prior for sources.

No transformation applied to parameters, i.e.: - Prior distribution: s ~ N(mu, 1/precision) - Likelihood contribution: y = A*s + b + ...

Attributes:

Name Type Description
truncation bool

indication of whether the emission rate prior should be truncated at 0. Defaults to True.

emission_rate_lb Union[float, ndarray]

lower bound for the source emission rates. Defaults to 0.

emission_rate_mean Union[float, ndarray]

prior mean for the emission rate distribution. Defaults to 0.

Source code in src/pyelq/component/source_model.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
@dataclass
class NormalResponse(SourceDistribution):
    """(Truncated) Gaussian prior for sources.

    No transformation applied to parameters, i.e.:
    - Prior distribution: s ~ N(mu, 1/precision)
    - Likelihood contribution: y = A*s + b + ...

    Attributes:
        truncation (bool): indication of whether the emission rate prior should be truncated at 0. Defaults to True.
        emission_rate_lb (Union[float, np.ndarray]): lower bound for the source emission rates. Defaults to 0.
        emission_rate_mean (Union[float, np.ndarray]): prior mean for the emission rate distribution. Defaults to 0.

    """

    truncation: bool = True
    emission_rate_lb: Union[float, np.ndarray] = 0
    emission_rate_mean: Union[float, np.ndarray] = 0

    def make_source_model(self, model: list) -> list:
        """Add distributional component to the overall model corresponding to the source emission rate distribution.

        Args:
            model (list): model as constructed so far, consisting of list of distributions.

        Returns:
            list: model, updated with distributions related to source prior.

        """
        domain_response_lower = None
        if self.truncation:
            domain_response_lower = self.emission_rate_lb

        model.append(
            mcmcNormal(
                "s",
                mean=parameter.MixtureParameterVector(param="mu_s", allocation="alloc_s"),
                precision=parameter.MixtureParameterMatrix(param="lambda_s", allocation="alloc_s"),
                domain_response_lower=domain_response_lower,
            )
        )
        return model

    def make_source_sampler(self, model: Model, sampler_list: list = None) -> list:
        """Initialise the source prior distribution part of the sampler.

        Args:
            model (Model): overall model set for the problem.
            sampler_list (list): list of samplers for individual parameters.

        Returns:
            list: sampler_list updated with sampler for the emission rate parameters.

        """
        if sampler_list is None:
            sampler_list = []
        sampler_list.append(NormalNormal("s", model))
        return sampler_list

    def make_source_state(self, state: dict) -> dict:
        """Initialise the emission rate part of the state.

        Args:
            state (dict): dictionary containing current state information.

        Returns:
            dict: state updated with initial emission rate vector.

        """
        state["s"] = np.zeros((self.nof_sources, 1))
        return state

    def from_mcmc_dist(self, store: dict):
        """Extract posterior emission rate samples from the MCMC sampler, attach them to the class.

        Args:
            store (dict): dictionary containing samples from the MCMC.

        """
        self.emission_rate = store["s"]

make_source_model(model)

Add distributional component to the overall model corresponding to the source emission rate distribution.

Parameters:

Name Type Description Default
model list

model as constructed so far, consisting of list of distributions.

required

Returns:

Name Type Description
list list

model, updated with distributions related to source prior.

Source code in src/pyelq/component/source_model.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def make_source_model(self, model: list) -> list:
    """Add distributional component to the overall model corresponding to the source emission rate distribution.

    Args:
        model (list): model as constructed so far, consisting of list of distributions.

    Returns:
        list: model, updated with distributions related to source prior.

    """
    domain_response_lower = None
    if self.truncation:
        domain_response_lower = self.emission_rate_lb

    model.append(
        mcmcNormal(
            "s",
            mean=parameter.MixtureParameterVector(param="mu_s", allocation="alloc_s"),
            precision=parameter.MixtureParameterMatrix(param="lambda_s", allocation="alloc_s"),
            domain_response_lower=domain_response_lower,
        )
    )
    return model

make_source_sampler(model, sampler_list=None)

Initialise the source prior distribution part of the sampler.

Parameters:

Name Type Description Default
model Model

overall model set for the problem.

required
sampler_list list

list of samplers for individual parameters.

None

Returns:

Name Type Description
list list

sampler_list updated with sampler for the emission rate parameters.

Source code in src/pyelq/component/source_model.py
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def make_source_sampler(self, model: Model, sampler_list: list = None) -> list:
    """Initialise the source prior distribution part of the sampler.

    Args:
        model (Model): overall model set for the problem.
        sampler_list (list): list of samplers for individual parameters.

    Returns:
        list: sampler_list updated with sampler for the emission rate parameters.

    """
    if sampler_list is None:
        sampler_list = []
    sampler_list.append(NormalNormal("s", model))
    return sampler_list

make_source_state(state)

Initialise the emission rate part of the state.

Parameters:

Name Type Description Default
state dict

dictionary containing current state information.

required

Returns:

Name Type Description
dict dict

state updated with initial emission rate vector.

Source code in src/pyelq/component/source_model.py
376
377
378
379
380
381
382
383
384
385
386
387
def make_source_state(self, state: dict) -> dict:
    """Initialise the emission rate part of the state.

    Args:
        state (dict): dictionary containing current state information.

    Returns:
        dict: state updated with initial emission rate vector.

    """
    state["s"] = np.zeros((self.nof_sources, 1))
    return state

from_mcmc_dist(store)

Extract posterior emission rate samples from the MCMC sampler, attach them to the class.

Parameters:

Name Type Description Default
store dict

dictionary containing samples from the MCMC.

required
Source code in src/pyelq/component/source_model.py
389
390
391
392
393
394
395
396
def from_mcmc_dist(self, store: dict):
    """Extract posterior emission rate samples from the MCMC sampler, attach them to the class.

    Args:
        store (dict): dictionary containing samples from the MCMC.

    """
    self.emission_rate = store["s"]

SourceModel dataclass

Bases: Component, SourceGrouping, SourceDistribution

Superclass for the specification of the source model in an inversion run.

Various different types of model. A SourceModel is an optional component of a model, and thus inherits from Component.

A subclass instance of SourceModel must inherit from
  • an INSTANCE of SourceDistribution, which specifies a prior emission rate distribution for all sources in the source map.
  • an INSTANCE of SourceGrouping, which specifies a type of mixture prior specification for the sources (for which the allocation is to be estimated as part of the inversion).

If the flag reversible_jump == True, then the number of sources and their locations are also estimated as part of the inversion, in addition to the emission rates. If this flag is set to true, the sensor_object, meteorology and gas_species objects are all attached to the class, as they will be required in the repeated computation of updates to the coupling matrix during the inversion.

Attributes:

Name Type Description
dispersion_model GaussianPlume

dispersion model used to generate the couplings between source locations and sensor observations.

coupling ndarray

coupling matrix generated using dispersion_model.

sensor_object SensorGroup

stores sensor information for reversible jump coupling updates.

meteorology MeteorologyGroup

stores meteorology information for reversible jump coupling updates.

gas_species GasSpecies

stores gas species information for reversible jump coupling updates.

reversible_jump bool

logical indicating whether the reversible jump algorithm for estimation of the number of sources and their locations should be run. Defaults to False.

random_walk_step_size ndarray

(3 x 1) array specifying the standard deviations of the distributions from which the random walk sampler draws new source locations. Defaults to np.array([1.0, 1.0, 0.1]).

site_limits ndarray

(3 x 2) array specifying the lower (column 0) and upper (column 1) limits of the analysis site. Only relevant for cases where reversible_jump == True (where sources are free to move in the solution).

rate_num_sources int

specification for the parameter for the Poisson prior distribution for the total number of sources. Only relevant for cases where reversible_jump == True (where the number of sources in the solution can change).

n_sources_max int

maximum number of sources that can feature in the solution. Only relevant for cases where reversible_jump == True (where the number of sources in the solution can change).

emission_proposal_std float

standard deviation of the truncated Gaussian distribution used to propose the new source emission rate in case of a birth move.

update_precision bool

logical indicating whether the prior precision parameter for emission rates should be updated as part of the inversion. Defaults to false.

prior_precision_shape Union[float, ndarray]

shape parameters for the prior Gamma distribution for the source precision parameter.

prior_precision_rate Union[float, ndarray]

rate parameters for the prior Gamma distribution for the source precision parameter.

initial_precision Union[float, ndarray]

initial value for the source emission rate precision parameter.

precision_scalar ndarray

precision values generated by MCMC inversion.

coverage_detection float

sensor detection threshold (in ppm) to be used for coverage calculations.

coverage_test_source float

test source (in kg/hr) which we wish to be able to see in coverage calculation.

threshold_function Callable

Callable function which returns a single value that defines the threshold for the coupling in a lambda function form. Examples: lambda x: np.quantile(x, 0.95, axis=0), lambda x: np.max(x, axis=0), lambda x: np.mean(x, axis=0). Defaults to np.quantile.

Source code in src/pyelq/component/source_model.py
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
@dataclass
class SourceModel(Component, SourceGrouping, SourceDistribution):
    """Superclass for the specification of the source model in an inversion run.

    Various different types of model. A SourceModel is an optional component of a model, and thus inherits
    from Component.

    A subclass instance of SourceModel must inherit from:
        - an INSTANCE of SourceDistribution, which specifies a prior emission rate distribution for all sources in the
            source map.
        - an INSTANCE of SourceGrouping, which specifies a type of mixture prior specification for the sources (for
            which the allocation is to be estimated as part of the inversion).

    If the flag reversible_jump == True, then the number of sources and their locations are also estimated as part of
    the inversion, in addition to the emission rates. If this flag is set to true, the sensor_object, meteorology and
    gas_species objects are all attached to the class, as they will be required in the repeated computation of updates
    to the coupling matrix during the inversion.

    Attributes:
        dispersion_model (GaussianPlume): dispersion model used to generate the couplings between source locations and
            sensor observations.
        coupling (np.ndarray): coupling matrix generated using dispersion_model.

        sensor_object (SensorGroup): stores sensor information for reversible jump coupling updates.
        meteorology (MeteorologyGroup): stores meteorology information for reversible jump coupling updates.
        gas_species (GasSpecies): stores gas species information for reversible jump coupling updates.

        reversible_jump (bool): logical indicating whether the reversible jump algorithm for estimation of the number
            of sources and their locations should be run. Defaults to False.
        random_walk_step_size (np.ndarray): (3 x 1) array specifying the standard deviations of the distributions
            from which the random walk sampler draws new source locations. Defaults to np.array([1.0, 1.0, 0.1]).
        site_limits (np.ndarray): (3 x 2) array specifying the lower (column 0) and upper (column 1) limits of the
            analysis site. Only relevant for cases where reversible_jump == True (where sources are free to move in
            the solution).
        rate_num_sources (int): specification for the parameter for the Poisson prior distribution for the total number
            of sources. Only relevant for cases where reversible_jump == True (where the number of sources in the
            solution can change).
        n_sources_max (int): maximum number of sources that can feature in the solution. Only relevant for cases where
            reversible_jump == True (where the number of sources in the solution can change).
        emission_proposal_std (float): standard deviation of the truncated Gaussian distribution used to propose the
            new source emission rate in case of a birth move.

        update_precision (bool): logical indicating whether the prior precision parameter for emission rates should be
            updated as part of the inversion. Defaults to false.
        prior_precision_shape (Union[float, np.ndarray]): shape parameters for the prior Gamma distribution for the
            source precision parameter.
        prior_precision_rate (Union[float, np.ndarray]): rate parameters for the prior Gamma distribution for the
            source precision parameter.
        initial_precision (Union[float, np.ndarray]): initial value for the source emission rate precision parameter.
        precision_scalar (np.ndarray): precision values generated by MCMC inversion.

        coverage_detection (float): sensor detection threshold (in ppm) to be used for coverage calculations.
        coverage_test_source (float): test source (in kg/hr) which we wish to be able to see in coverage calculation.

        threshold_function (Callable): Callable function which returns a single value that defines the threshold
            for the coupling in a lambda function form. Examples: lambda x: np.quantile(x, 0.95, axis=0),
            lambda x: np.max(x, axis=0), lambda x: np.mean(x, axis=0). Defaults to np.quantile.

    """

    dispersion_model: GaussianPlume = field(init=False, default=None)
    coupling: np.ndarray = field(init=False)

    sensor_object: SensorGroup = field(init=False, default=None)
    meteorology: Meteorology = field(init=False, default=None)
    gas_species: GasSpecies = field(init=False, default=None)

    reversible_jump: bool = False
    random_walk_step_size: np.ndarray = field(default_factory=lambda: np.array([1.0, 1.0, 0.1], ndmin=2).T)
    site_limits: np.ndarray = None
    rate_num_sources: int = 5
    n_sources_max: int = 20
    emission_proposal_std: float = 0.5

    update_precision: bool = False
    prior_precision_shape: Union[float, np.ndarray] = 1e-3
    prior_precision_rate: Union[float, np.ndarray] = 1e-3
    initial_precision: Union[float, np.ndarray] = 1.0
    precision_scalar: np.ndarray = field(init=False)

    coverage_detection: float = 0.1
    coverage_test_source: float = 6.0

    threshold_function: callable = lambda x: np.quantile(x, 0.95, axis=0)

    @property
    def nof_sources(self):
        """Get number of sources in the source map."""
        return self.dispersion_model.source_map.nof_sources

    @property
    def coverage_threshold(self):
        """Compute coverage threshold from detection threshold and test source strength."""
        return self.coverage_test_source / self.coverage_detection

    def initialise(self, sensor_object: SensorGroup, meteorology: Meteorology, gas_species: GasSpecies):
        """Set up the source model.

        Extract required information from the sensor, meteorology and gas species objects:
            - Attach coupling calculated using self.dispersion_model.
            - (If self.reversible_jump == True) Attach objects to source model which will be used in RJMCMC sampler,
                they will be required when we need to update the couplings when new source locations are proposed when
                we move/birth/death.

        Args:
            sensor_object (SensorGroup): object containing sensor data.
            meteorology (MeteorologyGroup): object containing meteorology data.
            gas_species (GasSpecies): object containing gas species information.

        """
        self.initialise_dispersion_model(sensor_object)
        self.coupling = self.dispersion_model.compute_coupling(
            sensor_object, meteorology, gas_species, output_stacked=True
        )
        self.screen_coverage()
        if self.reversible_jump:
            self.sensor_object = sensor_object
            self.meteorology = meteorology
            self.gas_species = gas_species

    def initialise_dispersion_model(self, sensor_object: SensorGroup):
        """Initialise the dispersion model.

        If a dispersion_model has already been attached to this instance, then this function takes no action.

        If a dispersion_model has not already been attached to the instance, then this function adds a GaussianPlume
        dispersion model, with a default source map that has limits set based on the sensor locations.

        Args:
            sensor_object (SensorGroup): object containing sensor data.

        """
        if self.dispersion_model is None:
            source_map = SourceMap()
            sensor_locations = sensor_object.location.to_enu()
            location_object = ENU(
                ref_latitude=sensor_locations.ref_latitude,
                ref_longitude=sensor_locations.ref_longitude,
                ref_altitude=sensor_locations.ref_altitude,
            )
            source_map.generate_sources(
                coordinate_object=location_object,
                sourcemap_limits=np.array(
                    [
                        [np.min(sensor_locations.east), np.max(sensor_locations.east)],
                        [np.min(sensor_locations.north), np.max(sensor_locations.north)],
                        [np.min(sensor_locations.up), np.max(sensor_locations.up)],
                    ]
                ),
                sourcemap_type="grid",
            )
            self.dispersion_model = GaussianPlume(source_map)

    def screen_coverage(self):
        """Screen the initial source map for coverage."""
        in_coverage_area = self.dispersion_model.compute_coverage(
            self.coupling, coverage_threshold=self.coverage_threshold, threshold_function=self.threshold_function
        )
        self.coupling = self.coupling[:, in_coverage_area]
        all_locations = self.dispersion_model.source_map.location.to_array()
        screened_locations = all_locations[in_coverage_area, :]
        self.dispersion_model.source_map.location.from_array(screened_locations)

    def update_coupling_column(self, state: dict, update_column: int) -> dict:
        """Update the coupling, based on changes to the source locations as part of inversion.

        To be used in two different situations:
            - movement of source locations (e.g. Metropolis Hastings, random walk).
            - adding of new source locations (e.g. reversible jump birth move).
        If [update_column < A.shape[1]]: an existing column of the A matrix is updated.
        If [update_column == A.shape[1]]: a new column is appended to the right-hand side of the A matrix
        (corresponding to a new source).

        A central assumption of this function is that the sensor information and meteorology information
        have already been interpolated onto the same space/time points.

        If an update_column is supplied, the coupling for that source location only is calculated to save on
        computation time. If update_column is None, then we just re-compute the whole coupling matrix.

        Args:
            state (dict): dictionary containing state parameters.
            update_column (int): index of the coupling column to be updated.

        Returns:
            state (dict): state dictionary containing updated coupling information.

        """
        self.dispersion_model.source_map.location.from_array(state["z_src"][:, [update_column]].T)
        new_coupling = self.dispersion_model.compute_coupling(
            self.sensor_object, self.meteorology, self.gas_species, output_stacked=True, run_interpolation=False
        )

        if update_column == state["A"].shape[1]:
            state["A"] = np.concatenate((state["A"], new_coupling), axis=1)
        elif update_column < state["A"].shape[1]:
            state["A"][:, [update_column]] = new_coupling
        else:
            raise ValueError("Invalid column specification for updating.")
        return state

    def birth_function(self, current_state: dict, prop_state: dict) -> Tuple[dict, float, float]:
        """Update MCMC state based on source birth proposal.

        Proposed state updated as follows:
            1- Add column to coupling matrix for new source location.
            2- If required, adjust other components of the state which correspond to the sources.
        The source emission rate vector will be adjusted using the standardised functionality
        in the openMCMC package.

        After the coupling has been updated, a coverage test is applied for the new source
        location. If the max coupling is too small, a large contribution is added to the
        log-proposal density for the new state, to force the sampler to reject it.

        A central assumption of this function is that the sensor information and meteorology information
        have already been interpolated onto the same space/time points.

        This function assumes that the new source location has been added as the final column of
        the source location matrix, and so will correspondingly append the new coupling column to the right
        hand side of the current state coupling, and append an emission rate as the last element of the
        current state emission rate vector.

        Args:
            current_state (dict): dictionary containing parameters of the current state.
            prop_state (dict): dictionary containing the parameters of the proposed state.

        Returns:
            prop_state (dict): proposed state, with coupling matrix and source emission rate vector updated.
            logp_pr_g_cr (float): log-transition density of the proposed state given the current state
                (i.e. log[p(proposed | current)])
            logp_cr_g_pr (float): log-transition density of the current state given the proposed state
                (i.e. log[p(current | proposed)])

        """
        prop_state = self.update_coupling_column(prop_state, int(prop_state["n_src"]) - 1)
        prop_state["alloc_s"] = np.concatenate((prop_state["alloc_s"], np.array([0], ndmin=2)), axis=0)
        in_cov_area = self.dispersion_model.compute_coverage(
            prop_state["A"][:, -1],
            coverage_threshold=self.coverage_threshold,
            threshold_function=self.threshold_function,
        )
        if not in_cov_area:
            logp_pr_g_cr = 1e10
        else:
            logp_pr_g_cr = 0.0
        logp_cr_g_pr = 0.0

        return prop_state, logp_pr_g_cr, logp_cr_g_pr

    @staticmethod
    def death_function(current_state: dict, prop_state: dict, deletion_index: int) -> Tuple[dict, float, float]:
        """Update MCMC state based on source death proposal.

        Proposed state updated as follows:
            1- Remove column from coupling for deleted source.
            2- If required, adjust other components of the state which correspond to the sources.
        The source emission rate vector will be adjusted using the standardised functionality in the general_mcmc repo.

        A central assumption of this function is that the sensor information and meteorology information have already
        been interpolated onto the same space/time points.

        Args:
            current_state (dict): dictionary containing parameters of the current state.
            prop_state (dict): dictionary containing the parameters of the proposed state.
            deletion_index (int): index of the source to be deleted in the overall set of sources.

        Returns:
            prop_state (dict): proposed state, with coupling matrix and source emission rate vector updated.
            logp_pr_g_cr (float): log-transition density of the proposed state given the current state
                (i.e. log[p(proposed | current)])
            logp_cr_g_pr (float): log-transition density of the current state given the proposed state
                (i.e. log[p(current | proposed)])

        """
        prop_state["A"] = np.delete(prop_state["A"], obj=deletion_index, axis=1)
        prop_state["alloc_s"] = np.delete(prop_state["alloc_s"], obj=deletion_index, axis=0)
        logp_pr_g_cr = 0.0
        logp_cr_g_pr = 0.0

        return prop_state, logp_pr_g_cr, logp_cr_g_pr

    def move_function(self, current_state: dict, update_column: int) -> dict:
        """Re-compute the coupling after a source location move.

        Function first updates the coupling column, and then checks whether the location passes a coverage test. If the
        location does not have good enough coverage, the state reverts to the coupling from the current state.

        Args:
            current_state (dict): dictionary containing parameters of the current state.
            update_column (int): index of the coupling column to be updated.

        Returns:
            dict: proposed state, with updated coupling matrix.

        """
        prop_state = deepcopy(current_state)
        prop_state = self.update_coupling_column(prop_state, update_column)
        in_cov_area = self.dispersion_model.compute_coverage(
            prop_state["A"][:, update_column],
            coverage_threshold=self.coverage_threshold,
            threshold_function=self.threshold_function,
        )
        if not in_cov_area:
            prop_state = deepcopy(current_state)
        return prop_state

    def make_model(self, model: list) -> list:
        """Take model list and append new elements from current model component.

        Args:
            model (list): Current list of model elements.

        Returns:
            list: model list updated with source-related distributions.

        """
        model = self.make_allocation_model(model)
        model = self.make_source_model(model)
        if self.update_precision:
            model.append(Gamma("lambda_s", shape="a_lam_s", rate="b_lam_s"))
        if self.reversible_jump:
            model.append(
                Uniform(
                    response="z_src",
                    domain_response_lower=self.site_limits[:, [0]],
                    domain_response_upper=self.site_limits[:, [1]],
                )
            )
            model.append(Poisson(response="n_src", rate="rho"))
        return model

    def make_sampler(self, model: Model, sampler_list: list) -> list:
        """Take sampler list and append new elements from current model component.

        Args:
            model (Model): Full model list of distributions.
            sampler_list (list): Current list of samplers.

        Returns:
            list: sampler list updated with source-related samplers.

        """
        sampler_list = self.make_source_sampler(model, sampler_list)
        sampler_list = self.make_allocation_sampler(model, sampler_list)
        if self.update_precision:
            sampler_list.append(NormalGamma("lambda_s", model))
        if self.reversible_jump:
            sampler_list = self.make_sampler_rjmcmc(model, sampler_list)
        return sampler_list

    def make_state(self, state: dict) -> dict:
        """Take state dictionary and append initial values from model component.

        Args:
            state (dict): current state vector.

        Returns:
            dict: current state vector with source-related parameters added.

        """
        state = self.make_allocation_state(state)
        state = self.make_source_state(state)
        state["A"] = self.coupling
        state["lambda_s"] = np.array(self.initial_precision, ndmin=1)
        if self.update_precision:
            state["a_lam_s"] = np.ones_like(self.initial_precision) * self.prior_precision_shape
            state["b_lam_s"] = np.ones_like(self.initial_precision) * self.prior_precision_rate
        if self.reversible_jump:
            state["z_src"] = self.dispersion_model.source_map.location.to_array().T
            state["n_src"] = state["z_src"].shape[1]
            state["rho"] = self.rate_num_sources
        return state

    def make_sampler_rjmcmc(self, model: Model, sampler_list: list) -> list:
        """Create the parts of the sampler related to the reversible jump MCMC scheme.

        RJ MCMC scheme:
            - create the RandomWalkLoop sampler object which updates the source locations one-at-a-time.
            - create the ReversibleJump sampler which proposes birth/death moves to add/remove sources from the source
                map.

        Args:
            model (Model): model object containing probability density objects for all uncertain
                parameters.
            sampler_list (list): list of existing samplers.

        Returns:
            sampler_list (list): list of samplers updated with samplers corresponding to RJMCMC routine.

        """
        sampler_list[-1].max_variable_size = self.n_sources_max

        sampler_list.append(
            RandomWalkLoop(
                "z_src",
                model,
                step=self.random_walk_step_size,
                max_variable_size=(3, self.n_sources_max),
                domain_limits=self.site_limits,
                state_update_function=self.move_function,
            )
        )
        matching_params = {"variable": "s", "matrix": "A", "scale": 1.0, "limits": [0.0, 1e6]}
        sampler_list.append(
            ReversibleJump(
                "n_src",
                model,
                step=np.array([1.0], ndmin=2),
                associated_params="z_src",
                n_max=self.n_sources_max,
                state_birth_function=self.birth_function,
                state_death_function=self.death_function,
                matching_params=matching_params,
            )
        )
        return sampler_list

    def from_mcmc(self, store: dict):
        """Extract results of mcmc from mcmc.store and attach to components.

        Args:
            store (dict): mcmc result dictionary.

        """
        self.from_mcmc_group(store)
        self.from_mcmc_dist(store)
        if self.update_precision:
            self.precision_scalar = store["lambda_s"]

    def plot_iterations(self, plot: "Plot", burn_in_value: int, y_axis_type: str = "linear") -> "Plot":
        """Plot the emission rate estimates source model object against MCMC iteration.

        Args:
            burn_in_value (int): Burn in value to show in plot.
            y_axis_type (str, optional): String to indicate whether the y-axis should be linear of log scale.
            plot (Plot): Plot object to which this figure will be added in the figure dictionary.

        Returns:
            plot (Plot): Plot object to which the figures added in the figure dictionary with
                keys 'estimated_values_plot'/'log_estimated_values_plot' and 'number_of_sources_plot'

        """
        plot.plot_emission_rate_estimates(source_model_object=self, burn_in=burn_in_value, y_axis_type=y_axis_type)
        plot.plot_single_trace(object_to_plot=self)
        return plot

nof_sources property

Get number of sources in the source map.

coverage_threshold property

Compute coverage threshold from detection threshold and test source strength.

initialise(sensor_object, meteorology, gas_species)

Set up the source model.

Extract required information from the sensor, meteorology and gas species objects: - Attach coupling calculated using self.dispersion_model. - (If self.reversible_jump == True) Attach objects to source model which will be used in RJMCMC sampler, they will be required when we need to update the couplings when new source locations are proposed when we move/birth/death.

Parameters:

Name Type Description Default
sensor_object SensorGroup

object containing sensor data.

required
meteorology MeteorologyGroup

object containing meteorology data.

required
gas_species GasSpecies

object containing gas species information.

required
Source code in src/pyelq/component/source_model.py
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def initialise(self, sensor_object: SensorGroup, meteorology: Meteorology, gas_species: GasSpecies):
    """Set up the source model.

    Extract required information from the sensor, meteorology and gas species objects:
        - Attach coupling calculated using self.dispersion_model.
        - (If self.reversible_jump == True) Attach objects to source model which will be used in RJMCMC sampler,
            they will be required when we need to update the couplings when new source locations are proposed when
            we move/birth/death.

    Args:
        sensor_object (SensorGroup): object containing sensor data.
        meteorology (MeteorologyGroup): object containing meteorology data.
        gas_species (GasSpecies): object containing gas species information.

    """
    self.initialise_dispersion_model(sensor_object)
    self.coupling = self.dispersion_model.compute_coupling(
        sensor_object, meteorology, gas_species, output_stacked=True
    )
    self.screen_coverage()
    if self.reversible_jump:
        self.sensor_object = sensor_object
        self.meteorology = meteorology
        self.gas_species = gas_species

initialise_dispersion_model(sensor_object)

Initialise the dispersion model.

If a dispersion_model has already been attached to this instance, then this function takes no action.

If a dispersion_model has not already been attached to the instance, then this function adds a GaussianPlume dispersion model, with a default source map that has limits set based on the sensor locations.

Parameters:

Name Type Description Default
sensor_object SensorGroup

object containing sensor data.

required
Source code in src/pyelq/component/source_model.py
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
def initialise_dispersion_model(self, sensor_object: SensorGroup):
    """Initialise the dispersion model.

    If a dispersion_model has already been attached to this instance, then this function takes no action.

    If a dispersion_model has not already been attached to the instance, then this function adds a GaussianPlume
    dispersion model, with a default source map that has limits set based on the sensor locations.

    Args:
        sensor_object (SensorGroup): object containing sensor data.

    """
    if self.dispersion_model is None:
        source_map = SourceMap()
        sensor_locations = sensor_object.location.to_enu()
        location_object = ENU(
            ref_latitude=sensor_locations.ref_latitude,
            ref_longitude=sensor_locations.ref_longitude,
            ref_altitude=sensor_locations.ref_altitude,
        )
        source_map.generate_sources(
            coordinate_object=location_object,
            sourcemap_limits=np.array(
                [
                    [np.min(sensor_locations.east), np.max(sensor_locations.east)],
                    [np.min(sensor_locations.north), np.max(sensor_locations.north)],
                    [np.min(sensor_locations.up), np.max(sensor_locations.up)],
                ]
            ),
            sourcemap_type="grid",
        )
        self.dispersion_model = GaussianPlume(source_map)

screen_coverage()

Screen the initial source map for coverage.

Source code in src/pyelq/component/source_model.py
552
553
554
555
556
557
558
559
560
def screen_coverage(self):
    """Screen the initial source map for coverage."""
    in_coverage_area = self.dispersion_model.compute_coverage(
        self.coupling, coverage_threshold=self.coverage_threshold, threshold_function=self.threshold_function
    )
    self.coupling = self.coupling[:, in_coverage_area]
    all_locations = self.dispersion_model.source_map.location.to_array()
    screened_locations = all_locations[in_coverage_area, :]
    self.dispersion_model.source_map.location.from_array(screened_locations)

update_coupling_column(state, update_column)

Update the coupling, based on changes to the source locations as part of inversion.

To be used in two different situations
  • movement of source locations (e.g. Metropolis Hastings, random walk).
  • adding of new source locations (e.g. reversible jump birth move).

If [update_column < A.shape[1]]: an existing column of the A matrix is updated. If [update_column == A.shape[1]]: a new column is appended to the right-hand side of the A matrix (corresponding to a new source).

A central assumption of this function is that the sensor information and meteorology information have already been interpolated onto the same space/time points.

If an update_column is supplied, the coupling for that source location only is calculated to save on computation time. If update_column is None, then we just re-compute the whole coupling matrix.

Parameters:

Name Type Description Default
state dict

dictionary containing state parameters.

required
update_column int

index of the coupling column to be updated.

required

Returns:

Name Type Description
state dict

state dictionary containing updated coupling information.

Source code in src/pyelq/component/source_model.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
def update_coupling_column(self, state: dict, update_column: int) -> dict:
    """Update the coupling, based on changes to the source locations as part of inversion.

    To be used in two different situations:
        - movement of source locations (e.g. Metropolis Hastings, random walk).
        - adding of new source locations (e.g. reversible jump birth move).
    If [update_column < A.shape[1]]: an existing column of the A matrix is updated.
    If [update_column == A.shape[1]]: a new column is appended to the right-hand side of the A matrix
    (corresponding to a new source).

    A central assumption of this function is that the sensor information and meteorology information
    have already been interpolated onto the same space/time points.

    If an update_column is supplied, the coupling for that source location only is calculated to save on
    computation time. If update_column is None, then we just re-compute the whole coupling matrix.

    Args:
        state (dict): dictionary containing state parameters.
        update_column (int): index of the coupling column to be updated.

    Returns:
        state (dict): state dictionary containing updated coupling information.

    """
    self.dispersion_model.source_map.location.from_array(state["z_src"][:, [update_column]].T)
    new_coupling = self.dispersion_model.compute_coupling(
        self.sensor_object, self.meteorology, self.gas_species, output_stacked=True, run_interpolation=False
    )

    if update_column == state["A"].shape[1]:
        state["A"] = np.concatenate((state["A"], new_coupling), axis=1)
    elif update_column < state["A"].shape[1]:
        state["A"][:, [update_column]] = new_coupling
    else:
        raise ValueError("Invalid column specification for updating.")
    return state

birth_function(current_state, prop_state)

Update MCMC state based on source birth proposal.

Proposed state updated as follows

1- Add column to coupling matrix for new source location. 2- If required, adjust other components of the state which correspond to the sources.

The source emission rate vector will be adjusted using the standardised functionality in the openMCMC package.

After the coupling has been updated, a coverage test is applied for the new source location. If the max coupling is too small, a large contribution is added to the log-proposal density for the new state, to force the sampler to reject it.

A central assumption of this function is that the sensor information and meteorology information have already been interpolated onto the same space/time points.

This function assumes that the new source location has been added as the final column of the source location matrix, and so will correspondingly append the new coupling column to the right hand side of the current state coupling, and append an emission rate as the last element of the current state emission rate vector.

Parameters:

Name Type Description Default
current_state dict

dictionary containing parameters of the current state.

required
prop_state dict

dictionary containing the parameters of the proposed state.

required

Returns:

Name Type Description
prop_state dict

proposed state, with coupling matrix and source emission rate vector updated.

logp_pr_g_cr float

log-transition density of the proposed state given the current state (i.e. log[p(proposed | current)])

logp_cr_g_pr float

log-transition density of the current state given the proposed state (i.e. log[p(current | proposed)])

Source code in src/pyelq/component/source_model.py
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
def birth_function(self, current_state: dict, prop_state: dict) -> Tuple[dict, float, float]:
    """Update MCMC state based on source birth proposal.

    Proposed state updated as follows:
        1- Add column to coupling matrix for new source location.
        2- If required, adjust other components of the state which correspond to the sources.
    The source emission rate vector will be adjusted using the standardised functionality
    in the openMCMC package.

    After the coupling has been updated, a coverage test is applied for the new source
    location. If the max coupling is too small, a large contribution is added to the
    log-proposal density for the new state, to force the sampler to reject it.

    A central assumption of this function is that the sensor information and meteorology information
    have already been interpolated onto the same space/time points.

    This function assumes that the new source location has been added as the final column of
    the source location matrix, and so will correspondingly append the new coupling column to the right
    hand side of the current state coupling, and append an emission rate as the last element of the
    current state emission rate vector.

    Args:
        current_state (dict): dictionary containing parameters of the current state.
        prop_state (dict): dictionary containing the parameters of the proposed state.

    Returns:
        prop_state (dict): proposed state, with coupling matrix and source emission rate vector updated.
        logp_pr_g_cr (float): log-transition density of the proposed state given the current state
            (i.e. log[p(proposed | current)])
        logp_cr_g_pr (float): log-transition density of the current state given the proposed state
            (i.e. log[p(current | proposed)])

    """
    prop_state = self.update_coupling_column(prop_state, int(prop_state["n_src"]) - 1)
    prop_state["alloc_s"] = np.concatenate((prop_state["alloc_s"], np.array([0], ndmin=2)), axis=0)
    in_cov_area = self.dispersion_model.compute_coverage(
        prop_state["A"][:, -1],
        coverage_threshold=self.coverage_threshold,
        threshold_function=self.threshold_function,
    )
    if not in_cov_area:
        logp_pr_g_cr = 1e10
    else:
        logp_pr_g_cr = 0.0
    logp_cr_g_pr = 0.0

    return prop_state, logp_pr_g_cr, logp_cr_g_pr

death_function(current_state, prop_state, deletion_index) staticmethod

Update MCMC state based on source death proposal.

Proposed state updated as follows

1- Remove column from coupling for deleted source. 2- If required, adjust other components of the state which correspond to the sources.

The source emission rate vector will be adjusted using the standardised functionality in the general_mcmc repo.

A central assumption of this function is that the sensor information and meteorology information have already been interpolated onto the same space/time points.

Parameters:

Name Type Description Default
current_state dict

dictionary containing parameters of the current state.

required
prop_state dict

dictionary containing the parameters of the proposed state.

required
deletion_index int

index of the source to be deleted in the overall set of sources.

required

Returns:

Name Type Description
prop_state dict

proposed state, with coupling matrix and source emission rate vector updated.

logp_pr_g_cr float

log-transition density of the proposed state given the current state (i.e. log[p(proposed | current)])

logp_cr_g_pr float

log-transition density of the current state given the proposed state (i.e. log[p(current | proposed)])

Source code in src/pyelq/component/source_model.py
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
@staticmethod
def death_function(current_state: dict, prop_state: dict, deletion_index: int) -> Tuple[dict, float, float]:
    """Update MCMC state based on source death proposal.

    Proposed state updated as follows:
        1- Remove column from coupling for deleted source.
        2- If required, adjust other components of the state which correspond to the sources.
    The source emission rate vector will be adjusted using the standardised functionality in the general_mcmc repo.

    A central assumption of this function is that the sensor information and meteorology information have already
    been interpolated onto the same space/time points.

    Args:
        current_state (dict): dictionary containing parameters of the current state.
        prop_state (dict): dictionary containing the parameters of the proposed state.
        deletion_index (int): index of the source to be deleted in the overall set of sources.

    Returns:
        prop_state (dict): proposed state, with coupling matrix and source emission rate vector updated.
        logp_pr_g_cr (float): log-transition density of the proposed state given the current state
            (i.e. log[p(proposed | current)])
        logp_cr_g_pr (float): log-transition density of the current state given the proposed state
            (i.e. log[p(current | proposed)])

    """
    prop_state["A"] = np.delete(prop_state["A"], obj=deletion_index, axis=1)
    prop_state["alloc_s"] = np.delete(prop_state["alloc_s"], obj=deletion_index, axis=0)
    logp_pr_g_cr = 0.0
    logp_cr_g_pr = 0.0

    return prop_state, logp_pr_g_cr, logp_cr_g_pr

move_function(current_state, update_column)

Re-compute the coupling after a source location move.

Function first updates the coupling column, and then checks whether the location passes a coverage test. If the location does not have good enough coverage, the state reverts to the coupling from the current state.

Parameters:

Name Type Description Default
current_state dict

dictionary containing parameters of the current state.

required
update_column int

index of the coupling column to be updated.

required

Returns:

Name Type Description
dict dict

proposed state, with updated coupling matrix.

Source code in src/pyelq/component/source_model.py
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
def move_function(self, current_state: dict, update_column: int) -> dict:
    """Re-compute the coupling after a source location move.

    Function first updates the coupling column, and then checks whether the location passes a coverage test. If the
    location does not have good enough coverage, the state reverts to the coupling from the current state.

    Args:
        current_state (dict): dictionary containing parameters of the current state.
        update_column (int): index of the coupling column to be updated.

    Returns:
        dict: proposed state, with updated coupling matrix.

    """
    prop_state = deepcopy(current_state)
    prop_state = self.update_coupling_column(prop_state, update_column)
    in_cov_area = self.dispersion_model.compute_coverage(
        prop_state["A"][:, update_column],
        coverage_threshold=self.coverage_threshold,
        threshold_function=self.threshold_function,
    )
    if not in_cov_area:
        prop_state = deepcopy(current_state)
    return prop_state

make_model(model)

Take model list and append new elements from current model component.

Parameters:

Name Type Description Default
model list

Current list of model elements.

required

Returns:

Name Type Description
list list

model list updated with source-related distributions.

Source code in src/pyelq/component/source_model.py
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
def make_model(self, model: list) -> list:
    """Take model list and append new elements from current model component.

    Args:
        model (list): Current list of model elements.

    Returns:
        list: model list updated with source-related distributions.

    """
    model = self.make_allocation_model(model)
    model = self.make_source_model(model)
    if self.update_precision:
        model.append(Gamma("lambda_s", shape="a_lam_s", rate="b_lam_s"))
    if self.reversible_jump:
        model.append(
            Uniform(
                response="z_src",
                domain_response_lower=self.site_limits[:, [0]],
                domain_response_upper=self.site_limits[:, [1]],
            )
        )
        model.append(Poisson(response="n_src", rate="rho"))
    return model

make_sampler(model, sampler_list)

Take sampler list and append new elements from current model component.

Parameters:

Name Type Description Default
model Model

Full model list of distributions.

required
sampler_list list

Current list of samplers.

required

Returns:

Name Type Description
list list

sampler list updated with source-related samplers.

Source code in src/pyelq/component/source_model.py
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
def make_sampler(self, model: Model, sampler_list: list) -> list:
    """Take sampler list and append new elements from current model component.

    Args:
        model (Model): Full model list of distributions.
        sampler_list (list): Current list of samplers.

    Returns:
        list: sampler list updated with source-related samplers.

    """
    sampler_list = self.make_source_sampler(model, sampler_list)
    sampler_list = self.make_allocation_sampler(model, sampler_list)
    if self.update_precision:
        sampler_list.append(NormalGamma("lambda_s", model))
    if self.reversible_jump:
        sampler_list = self.make_sampler_rjmcmc(model, sampler_list)
    return sampler_list

make_state(state)

Take state dictionary and append initial values from model component.

Parameters:

Name Type Description Default
state dict

current state vector.

required

Returns:

Name Type Description
dict dict

current state vector with source-related parameters added.

Source code in src/pyelq/component/source_model.py
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def make_state(self, state: dict) -> dict:
    """Take state dictionary and append initial values from model component.

    Args:
        state (dict): current state vector.

    Returns:
        dict: current state vector with source-related parameters added.

    """
    state = self.make_allocation_state(state)
    state = self.make_source_state(state)
    state["A"] = self.coupling
    state["lambda_s"] = np.array(self.initial_precision, ndmin=1)
    if self.update_precision:
        state["a_lam_s"] = np.ones_like(self.initial_precision) * self.prior_precision_shape
        state["b_lam_s"] = np.ones_like(self.initial_precision) * self.prior_precision_rate
    if self.reversible_jump:
        state["z_src"] = self.dispersion_model.source_map.location.to_array().T
        state["n_src"] = state["z_src"].shape[1]
        state["rho"] = self.rate_num_sources
    return state

make_sampler_rjmcmc(model, sampler_list)

Create the parts of the sampler related to the reversible jump MCMC scheme.

RJ MCMC scheme
  • create the RandomWalkLoop sampler object which updates the source locations one-at-a-time.
  • create the ReversibleJump sampler which proposes birth/death moves to add/remove sources from the source map.

Parameters:

Name Type Description Default
model Model

model object containing probability density objects for all uncertain parameters.

required
sampler_list list

list of existing samplers.

required

Returns:

Name Type Description
sampler_list list

list of samplers updated with samplers corresponding to RJMCMC routine.

Source code in src/pyelq/component/source_model.py
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
def make_sampler_rjmcmc(self, model: Model, sampler_list: list) -> list:
    """Create the parts of the sampler related to the reversible jump MCMC scheme.

    RJ MCMC scheme:
        - create the RandomWalkLoop sampler object which updates the source locations one-at-a-time.
        - create the ReversibleJump sampler which proposes birth/death moves to add/remove sources from the source
            map.

    Args:
        model (Model): model object containing probability density objects for all uncertain
            parameters.
        sampler_list (list): list of existing samplers.

    Returns:
        sampler_list (list): list of samplers updated with samplers corresponding to RJMCMC routine.

    """
    sampler_list[-1].max_variable_size = self.n_sources_max

    sampler_list.append(
        RandomWalkLoop(
            "z_src",
            model,
            step=self.random_walk_step_size,
            max_variable_size=(3, self.n_sources_max),
            domain_limits=self.site_limits,
            state_update_function=self.move_function,
        )
    )
    matching_params = {"variable": "s", "matrix": "A", "scale": 1.0, "limits": [0.0, 1e6]}
    sampler_list.append(
        ReversibleJump(
            "n_src",
            model,
            step=np.array([1.0], ndmin=2),
            associated_params="z_src",
            n_max=self.n_sources_max,
            state_birth_function=self.birth_function,
            state_death_function=self.death_function,
            matching_params=matching_params,
        )
    )
    return sampler_list

from_mcmc(store)

Extract results of mcmc from mcmc.store and attach to components.

Parameters:

Name Type Description Default
store dict

mcmc result dictionary.

required
Source code in src/pyelq/component/source_model.py
815
816
817
818
819
820
821
822
823
824
825
def from_mcmc(self, store: dict):
    """Extract results of mcmc from mcmc.store and attach to components.

    Args:
        store (dict): mcmc result dictionary.

    """
    self.from_mcmc_group(store)
    self.from_mcmc_dist(store)
    if self.update_precision:
        self.precision_scalar = store["lambda_s"]

plot_iterations(plot, burn_in_value, y_axis_type='linear')

Plot the emission rate estimates source model object against MCMC iteration.

Parameters:

Name Type Description Default
burn_in_value int

Burn in value to show in plot.

required
y_axis_type str

String to indicate whether the y-axis should be linear of log scale.

'linear'
plot Plot

Plot object to which this figure will be added in the figure dictionary.

required

Returns:

Name Type Description
plot Plot

Plot object to which the figures added in the figure dictionary with keys 'estimated_values_plot'/'log_estimated_values_plot' and 'number_of_sources_plot'

Source code in src/pyelq/component/source_model.py
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
def plot_iterations(self, plot: "Plot", burn_in_value: int, y_axis_type: str = "linear") -> "Plot":
    """Plot the emission rate estimates source model object against MCMC iteration.

    Args:
        burn_in_value (int): Burn in value to show in plot.
        y_axis_type (str, optional): String to indicate whether the y-axis should be linear of log scale.
        plot (Plot): Plot object to which this figure will be added in the figure dictionary.

    Returns:
        plot (Plot): Plot object to which the figures added in the figure dictionary with
            keys 'estimated_values_plot'/'log_estimated_values_plot' and 'number_of_sources_plot'

    """
    plot.plot_emission_rate_estimates(source_model_object=self, burn_in=burn_in_value, y_axis_type=y_axis_type)
    plot.plot_single_trace(object_to_plot=self)
    return plot

Normal dataclass

Bases: SourceModel, NullGrouping, NormalResponse

Normal model, with null allocation.

(Truncated) Gaussian prior for emission rates, no grouping/allocation; no transformation applied to emission rate parameters.

Can be used in the following cases
  • Fixed set of sources (grid or specific locations), all with the same Gaussian prior distribution.
  • Variable number of sources, with a common prior distribution, estimated using reversible jump MCMC.
  • Fixed set of sources with a bespoke prior per source (using the allocation to map prior parameters onto sources).
Source code in src/pyelq/component/source_model.py
845
846
847
848
849
850
851
852
853
854
855
856
857
858
@dataclass
class Normal(SourceModel, NullGrouping, NormalResponse):
    """Normal model, with null allocation.

    (Truncated) Gaussian prior for emission rates, no grouping/allocation; no transformation applied to emission rate
    parameters.

    Can be used in the following cases:
        - Fixed set of sources (grid or specific locations), all with the same Gaussian prior distribution.
        - Variable number of sources, with a common prior distribution, estimated using reversible jump MCMC.
        - Fixed set of sources with a bespoke prior per source (using the allocation to map prior parameters onto
            sources).

    """

NormalSlabAndSpike dataclass

Bases: SourceModel, SlabAndSpike, NormalResponse

Normal Slab and Spike model.

(Truncated) Gaussian prior for emission rates, slab and spike prior, with allocation estimation; no transformation applied to emission rate parameters.

Attributes:

Name Type Description
initial_precision ndarray

initial precision parameter for a slab and spike case. shape=(2, 1).

emission_rate_mean ndarray

emission rate prior mean for a slab and spike case. shape=(2, 1).

Source code in src/pyelq/component/source_model.py
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
@dataclass
class NormalSlabAndSpike(SourceModel, SlabAndSpike, NormalResponse):
    """Normal Slab and Spike model.

    (Truncated) Gaussian prior for emission rates, slab and spike prior, with allocation estimation; no transformation
    applied to emission rate parameters.

    Attributes:
        initial_precision (np.ndarray): initial precision parameter for a slab and spike case. shape=(2, 1).
        emission_rate_mean (np.ndarray): emission rate prior mean for a slab and spike case. shape=(2, 1).

    """

    initial_precision: np.ndarray = field(default_factory=lambda: np.array([1 / (10**2), 1 / (0.01**2)], ndmin=2).T)
    emission_rate_mean: np.ndarray = field(default_factory=lambda: np.array([0, 0], ndmin=2).T)