Skip to content

Coordinate System

Coordinate System.

This code provides the definition of, and the functionality for, all the main coordinate systems that are used in pyELQ. Each coordinate system has relevant methods for features that are commonly required. Also provided is a set of conversions between each of the systems, alongside some functionality for interpolation.

Coordinate dataclass

Bases: ABC

Abstract base class for coordinate transformations.

Attributes:

Name Type Description
use_degrees bool

Flag if reference uses degrees (True) or radians (False). Defaults to True.

ellipsoid Ellipsoid

Definition of the Ellipsoid used in the coordinate system, for which the default is WGS84. See: https://en.wikipedia.org/wiki/World_Geodetic_System.

Source code in src/pyelq/coordinate_system.py
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
@dataclass
class Coordinate(ABC):
    """Abstract base class for coordinate transformations.

    Attributes:
        use_degrees (bool): Flag if reference uses degrees (True) or radians (False). Defaults to True.
        ellipsoid (pm.Ellipsoid): Definition of the Ellipsoid used in the coordinate system, for which the default is
            WGS84. See: https://en.wikipedia.org/wiki/World_Geodetic_System.

    """

    use_degrees: bool = field(init=False)
    ellipsoid: pm.Ellipsoid = field(init=False)

    def __post_init__(self):
        self.use_degrees = True
        self.ellipsoid = pm.Ellipsoid.from_name("wgs84")

    @property
    @abstractmethod
    def nof_observations(self) -> int:
        """Number of observations contained in the class instance, implemented as dependent property."""

    @abstractmethod
    def from_array(self, array: np.ndarray) -> None:
        """Unstack a numpy array into the corresponding coordinates.

        The method has no return as it sets the corresponding attributes of the coordinate class instance.

        Args:
            array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
                array

        """

    @abstractmethod
    def to_array(self, dim: int = 3) -> np.ndarray:
        """Stacks coordinates together into a numpy array.

        Args:
            dim (int, optional): Number of dimensions to use, which is either 2 or 3.

        Returns:
            np.ndarray: Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

        """

    @abstractmethod
    def to_lla(self):
        """LLA: Converts coordinates to latitude/longitude/altitude system."""

    @abstractmethod
    def to_ecef(self):
        """ECEF: Convert coordinates to earth centered earth fixed coordinates."""

    @abstractmethod
    def to_enu(self, ref_latitude: float = None, ref_longitude: float = None, ref_altitude: float = None):
        """Converts coordinates to East North Up system.

        If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

        Args:
            ref_latitude (float, optional): reference latitude for ENU
            ref_longitude (float, optional): reference longitude for ENU
            ref_altitude (float, optional):  reference altitude for ENU

        Returns:
           (ENU): East North Up coordinate object

        """

    def to_object_type(self, coordinate_object):
        """Converts current object to same class as input coordinate_object.

        Args:
            coordinate_object (Coordinate): An coordinate object which provides the coordinate system to convert self to

        Returns:
            (Coordinate): The converted coordinate object

        """
        if type(coordinate_object) is not type(self):
            if isinstance(coordinate_object, LLA):
                temp_object = self.to_lla()
            elif isinstance(coordinate_object, ENU):
                temp_object = self.to_enu(
                    ref_latitude=coordinate_object.ref_latitude,
                    ref_longitude=coordinate_object.ref_longitude,
                    ref_altitude=coordinate_object.ref_altitude,
                )
            elif isinstance(coordinate_object, ECEF):
                temp_object = self.to_ecef()
            else:
                raise TypeError("Please provide a valid coordinate type")

            return temp_object

        return self

    def interpolate(self, values: np.ndarray, locations, dim: int = 3, **kwargs) -> np.ndarray:
        """Interpolate data using coordinate object.

        If locations coordinate system does not match self's coordinate system it will be converted to same type as
        self. In the ENU case extra checking needs to take place to check reference locations match up.

        If only 1 value is provided which needs to be interpolated to many other locations we just set the value at all
        these locations to the single input value

        Args:
            values (np.ndarray): Values to interpolate,  consistent with location in self
            locations (Coordinate): Coordinate object containing locations to which you want to interpolate
            dim (int): Number of dimensions to use for interpolation (2 or 3)
            **kwargs (dict):  Other arguments available in scipy.interpolate.griddata e.g. method, fill_value

        Returns:
            Result (np.ndarray): Interpolated values at requested locations.

        """
        locations = locations.to_object_type(coordinate_object=self)

        if isinstance(self, ENU):
            if (
                self.ref_latitude != locations.ref_latitude
                or self.ref_longitude != locations.ref_longitude
                or self.ref_altitude != locations.ref_altitude
            ):
                locations = locations.to_lla()
                locations = locations.to_enu(
                    ref_latitude=self.ref_latitude, ref_longitude=self.ref_longitude, ref_altitude=self.ref_altitude
                )
        result = sti.interpolate(
            location_in=self.to_array(dim),
            values_in=values.flatten(),
            location_out=locations.to_array(dim=dim),
            **kwargs,
        )

        return result

    def make_grid(
        self, bounds: np.ndarray, grid_type: str = "rectangular", shape: Union[tuple, np.ndarray] = (5, 5, 1)
    ) -> np.ndarray:
        """Generates grid of values locations based on specified inputs.

        If the grid type is 'spherical', we scale the latitude and longitude from -90/90 and -180/180 to 0/1 for the
        use in temp_lat_rad and temp_lon_rad.

        Args:
            bounds (np.ndarray): Limits of the grid on which to generate the grid of size [dim x 2]
                if dim == 2 we assume the third dimension will be zeros
            grid_type (str, optional): Type of grid to generate, default 'rectangular':
                     rectangular == rectangular grid of shape grd_shape,
                     spherical == grid of shape grid_shape taking into account a spherical spacing
            shape: (tuple, optional): Number of grid cells to generate in each dimension, total number of
                grid cells will be the product of the entries of this tuple

        Returns
            np.ndarray: gridded of locations

        """
        dimension = bounds.shape[0]

        if grid_type == "rectangular":
            dim_0 = np.linspace(bounds[0, 0], bounds[0, 1], num=shape[0])
            dim_1 = np.linspace(bounds[1, 0], bounds[1, 1], num=shape[1])
            if dimension == 3:
                dim_2 = np.linspace(bounds[2, 0], bounds[2, 1], num=shape[2])
            else:
                dim_2 = np.array(0)

            dim_0, dim_1, dim_2 = np.meshgrid(dim_0, dim_1, dim_2)
            array = np.stack([dim_0.flatten(), dim_1.flatten(), dim_2.flatten()], axis=1)
        elif grid_type == "spherical":
            temp_object = deepcopy(self)
            temp_object.from_array(array=bounds)
            temp_object = temp_object.to_lla()
            temp_object.latitude = (temp_object.latitude - (-90)) / 180
            temp_object.longitude = (temp_object.longitude - (-180)) / 360

            temp_lat_rad = np.linspace(start=temp_object.latitude[0], stop=temp_object.latitude[1], num=shape[0])
            temp_lon_rad = np.linspace(start=temp_object.longitude[0], stop=temp_object.longitude[1], num=shape[1])

            longitude = (2 * np.pi * temp_lon_rad - np.pi) * 180 / np.pi
            latitude = (np.arccos(1 - 2 * temp_lat_rad) - 0.5 * np.pi) * 180 / np.pi
            if dimension == 3:
                altitude = np.linspace(start=temp_object.altitude[0], stop=temp_object.altitude[1], num=shape[2])
                latitude, longitude, altitude = np.meshgrid(latitude, longitude, altitude)
                array = np.stack(
                    [latitude.flatten() * np.pi / 180, longitude.flatten() * np.pi / 180, altitude.flatten()], axis=1
                )
            else:
                latitude, longitude = np.meshgrid(latitude, longitude)
                array = np.stack([latitude.flatten() * np.pi / 180, longitude.flatten() * np.pi / 180], axis=1)

            temp_object.from_array(array=array)
            temp_object = temp_object.to_object_type(self)
            array = temp_object.to_array()
        else:
            raise NotImplementedError("Please provide a valid grid type")

        return array

    def create_tree(self) -> KDTree:
        """Create KD tree for the purpose of fast distance computation.

        Returns:
                KDTree: Spatial KD tree

        """
        return KDTree(self.to_array())

nof_observations abstractmethod property

Number of observations contained in the class instance, implemented as dependent property.

from_array(array) abstractmethod

Unstack a numpy array into the corresponding coordinates.

The method has no return as it sets the corresponding attributes of the coordinate class instance.

Parameters:

Name Type Description Default
array ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

required
Source code in src/pyelq/coordinate_system.py
69
70
71
72
73
74
75
76
77
78
79
@abstractmethod
def from_array(self, array: np.ndarray) -> None:
    """Unstack a numpy array into the corresponding coordinates.

    The method has no return as it sets the corresponding attributes of the coordinate class instance.

    Args:
        array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
            array

    """

to_array(dim=3) abstractmethod

Stacks coordinates together into a numpy array.

Parameters:

Name Type Description Default
dim int

Number of dimensions to use, which is either 2 or 3.

3

Returns:

Type Description
ndarray

np.ndarray: Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

Source code in src/pyelq/coordinate_system.py
81
82
83
84
85
86
87
88
89
90
91
@abstractmethod
def to_array(self, dim: int = 3) -> np.ndarray:
    """Stacks coordinates together into a numpy array.

    Args:
        dim (int, optional): Number of dimensions to use, which is either 2 or 3.

    Returns:
        np.ndarray: Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

    """

to_lla() abstractmethod

Source code in src/pyelq/coordinate_system.py
93
94
95
@abstractmethod
def to_lla(self):
    """LLA: Converts coordinates to latitude/longitude/altitude system."""

to_ecef() abstractmethod

Source code in src/pyelq/coordinate_system.py
97
98
99
@abstractmethod
def to_ecef(self):
    """ECEF: Convert coordinates to earth centered earth fixed coordinates."""

to_enu(ref_latitude=None, ref_longitude=None, ref_altitude=None) abstractmethod

Converts coordinates to East North Up system.

If a reference is not provided, the minimum of coordinates in Lat/Lon/Alt is used as the reference.

Parameters:

Name Type Description Default
ref_latitude float

reference latitude for ENU

None
ref_longitude float

reference longitude for ENU

None
ref_altitude float

reference altitude for ENU

None

Returns:

Type Description
ENU

East North Up coordinate object

Source code in src/pyelq/coordinate_system.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
@abstractmethod
def to_enu(self, ref_latitude: float = None, ref_longitude: float = None, ref_altitude: float = None):
    """Converts coordinates to East North Up system.

    If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

    Args:
        ref_latitude (float, optional): reference latitude for ENU
        ref_longitude (float, optional): reference longitude for ENU
        ref_altitude (float, optional):  reference altitude for ENU

    Returns:
       (ENU): East North Up coordinate object

    """

to_object_type(coordinate_object)

Converts current object to same class as input coordinate_object.

Parameters:

Name Type Description Default
coordinate_object Coordinate

An coordinate object which provides the coordinate system to convert self to

required

Returns:

Type Description
Coordinate

The converted coordinate object

Source code in src/pyelq/coordinate_system.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def to_object_type(self, coordinate_object):
    """Converts current object to same class as input coordinate_object.

    Args:
        coordinate_object (Coordinate): An coordinate object which provides the coordinate system to convert self to

    Returns:
        (Coordinate): The converted coordinate object

    """
    if type(coordinate_object) is not type(self):
        if isinstance(coordinate_object, LLA):
            temp_object = self.to_lla()
        elif isinstance(coordinate_object, ENU):
            temp_object = self.to_enu(
                ref_latitude=coordinate_object.ref_latitude,
                ref_longitude=coordinate_object.ref_longitude,
                ref_altitude=coordinate_object.ref_altitude,
            )
        elif isinstance(coordinate_object, ECEF):
            temp_object = self.to_ecef()
        else:
            raise TypeError("Please provide a valid coordinate type")

        return temp_object

    return self

interpolate(values, locations, dim=3, **kwargs)

Interpolate data using coordinate object.

If locations coordinate system does not match self's coordinate system it will be converted to same type as self. In the ENU case extra checking needs to take place to check reference locations match up.

If only 1 value is provided which needs to be interpolated to many other locations we just set the value at all these locations to the single input value

Parameters:

Name Type Description Default
values ndarray

Values to interpolate, consistent with location in self

required
locations Coordinate

Coordinate object containing locations to which you want to interpolate

required
dim int

Number of dimensions to use for interpolation (2 or 3)

3
**kwargs dict

Other arguments available in scipy.interpolate.griddata e.g. method, fill_value

{}

Returns:

Name Type Description
Result ndarray

Interpolated values at requested locations.

Source code in src/pyelq/coordinate_system.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def interpolate(self, values: np.ndarray, locations, dim: int = 3, **kwargs) -> np.ndarray:
    """Interpolate data using coordinate object.

    If locations coordinate system does not match self's coordinate system it will be converted to same type as
    self. In the ENU case extra checking needs to take place to check reference locations match up.

    If only 1 value is provided which needs to be interpolated to many other locations we just set the value at all
    these locations to the single input value

    Args:
        values (np.ndarray): Values to interpolate,  consistent with location in self
        locations (Coordinate): Coordinate object containing locations to which you want to interpolate
        dim (int): Number of dimensions to use for interpolation (2 or 3)
        **kwargs (dict):  Other arguments available in scipy.interpolate.griddata e.g. method, fill_value

    Returns:
        Result (np.ndarray): Interpolated values at requested locations.

    """
    locations = locations.to_object_type(coordinate_object=self)

    if isinstance(self, ENU):
        if (
            self.ref_latitude != locations.ref_latitude
            or self.ref_longitude != locations.ref_longitude
            or self.ref_altitude != locations.ref_altitude
        ):
            locations = locations.to_lla()
            locations = locations.to_enu(
                ref_latitude=self.ref_latitude, ref_longitude=self.ref_longitude, ref_altitude=self.ref_altitude
            )
    result = sti.interpolate(
        location_in=self.to_array(dim),
        values_in=values.flatten(),
        location_out=locations.to_array(dim=dim),
        **kwargs,
    )

    return result

make_grid(bounds, grid_type='rectangular', shape=(5, 5, 1))

Generates grid of values locations based on specified inputs.

If the grid type is 'spherical', we scale the latitude and longitude from -90/90 and -180/180 to 0/1 for the use in temp_lat_rad and temp_lon_rad.

Parameters:

Name Type Description Default
bounds ndarray

Limits of the grid on which to generate the grid of size [dim x 2] if dim == 2 we assume the third dimension will be zeros

required
grid_type str

Type of grid to generate, default 'rectangular': rectangular == rectangular grid of shape grd_shape, spherical == grid of shape grid_shape taking into account a spherical spacing

'rectangular'
shape Union[tuple, ndarray]

(tuple, optional): Number of grid cells to generate in each dimension, total number of grid cells will be the product of the entries of this tuple

(5, 5, 1)

Returns np.ndarray: gridded of locations

Source code in src/pyelq/coordinate_system.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def make_grid(
    self, bounds: np.ndarray, grid_type: str = "rectangular", shape: Union[tuple, np.ndarray] = (5, 5, 1)
) -> np.ndarray:
    """Generates grid of values locations based on specified inputs.

    If the grid type is 'spherical', we scale the latitude and longitude from -90/90 and -180/180 to 0/1 for the
    use in temp_lat_rad and temp_lon_rad.

    Args:
        bounds (np.ndarray): Limits of the grid on which to generate the grid of size [dim x 2]
            if dim == 2 we assume the third dimension will be zeros
        grid_type (str, optional): Type of grid to generate, default 'rectangular':
                 rectangular == rectangular grid of shape grd_shape,
                 spherical == grid of shape grid_shape taking into account a spherical spacing
        shape: (tuple, optional): Number of grid cells to generate in each dimension, total number of
            grid cells will be the product of the entries of this tuple

    Returns
        np.ndarray: gridded of locations

    """
    dimension = bounds.shape[0]

    if grid_type == "rectangular":
        dim_0 = np.linspace(bounds[0, 0], bounds[0, 1], num=shape[0])
        dim_1 = np.linspace(bounds[1, 0], bounds[1, 1], num=shape[1])
        if dimension == 3:
            dim_2 = np.linspace(bounds[2, 0], bounds[2, 1], num=shape[2])
        else:
            dim_2 = np.array(0)

        dim_0, dim_1, dim_2 = np.meshgrid(dim_0, dim_1, dim_2)
        array = np.stack([dim_0.flatten(), dim_1.flatten(), dim_2.flatten()], axis=1)
    elif grid_type == "spherical":
        temp_object = deepcopy(self)
        temp_object.from_array(array=bounds)
        temp_object = temp_object.to_lla()
        temp_object.latitude = (temp_object.latitude - (-90)) / 180
        temp_object.longitude = (temp_object.longitude - (-180)) / 360

        temp_lat_rad = np.linspace(start=temp_object.latitude[0], stop=temp_object.latitude[1], num=shape[0])
        temp_lon_rad = np.linspace(start=temp_object.longitude[0], stop=temp_object.longitude[1], num=shape[1])

        longitude = (2 * np.pi * temp_lon_rad - np.pi) * 180 / np.pi
        latitude = (np.arccos(1 - 2 * temp_lat_rad) - 0.5 * np.pi) * 180 / np.pi
        if dimension == 3:
            altitude = np.linspace(start=temp_object.altitude[0], stop=temp_object.altitude[1], num=shape[2])
            latitude, longitude, altitude = np.meshgrid(latitude, longitude, altitude)
            array = np.stack(
                [latitude.flatten() * np.pi / 180, longitude.flatten() * np.pi / 180, altitude.flatten()], axis=1
            )
        else:
            latitude, longitude = np.meshgrid(latitude, longitude)
            array = np.stack([latitude.flatten() * np.pi / 180, longitude.flatten() * np.pi / 180], axis=1)

        temp_object.from_array(array=array)
        temp_object = temp_object.to_object_type(self)
        array = temp_object.to_array()
    else:
        raise NotImplementedError("Please provide a valid grid type")

    return array

create_tree()

Create KD tree for the purpose of fast distance computation.

Returns:

Name Type Description
KDTree KDTree

Spatial KD tree

Source code in src/pyelq/coordinate_system.py
248
249
250
251
252
253
254
255
def create_tree(self) -> KDTree:
    """Create KD tree for the purpose of fast distance computation.

    Returns:
            KDTree: Spatial KD tree

    """
    return KDTree(self.to_array())

LLA dataclass

Bases: Coordinate

Defines the properties and functionality of the latitude/ longitude/ altitude coordinate system.

Attributes:

Name Type Description
latitude ndarray

Latitude values in degrees.

longitude ndarray

Longitude values in degrees.

altitude ndarray

Altitude values in meters with respect to a spheroid.

Source code in src/pyelq/coordinate_system.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@dataclass
class LLA(Coordinate):
    """Defines the properties and functionality of the latitude/ longitude/ altitude coordinate system.

    Attributes:
        latitude (np.ndarray): Latitude values in degrees.
        longitude (np.ndarray): Longitude values in degrees.
        altitude (np.ndarray): Altitude values in meters with respect to a spheroid.

    """

    latitude: np.ndarray = None
    longitude: np.ndarray = None
    altitude: np.ndarray = None

    @property
    def nof_observations(self):
        """Number of observations contained in the class instance, implemented as dependent property."""
        if self.latitude is None:
            return 0
        return self.latitude.size

    def from_array(self, array):
        """Unstack a numpy array into the corresponding coordinates.

        The method has no return as it sets the corresponding attributes of the coordinate class instance.

        Args:
            array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
                array

        """
        dim = array.shape[1]
        self.latitude = array[:, 0]
        self.longitude = array[:, 1]
        self.altitude = np.zeros_like(self.latitude)
        if dim == 3:
            self.altitude = array[:, 2]

    def to_array(self, dim=3):
        """Stacks coordinates together into a numpy array.

        Args:
            dim (int, optional): Number of dimensions to use, which is either 2 or 3.

        Returns:
            (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

        """
        if dim == 2:
            return np.stack((self.latitude.flatten(), self.longitude.flatten()), axis=1)
        return np.stack((self.latitude.flatten(), self.longitude.flatten(), self.altitude.flatten()), axis=1)

    def to_lla(self):
        """LLA: Converts coordinates to latitude/longitude/altitude system."""
        return self

    def to_ecef(self):
        """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
        if self.altitude is None:
            self.altitude = np.zeros(self.latitude.shape)
        ecef_object = ECEF()
        ecef_object.x, ecef_object.y, ecef_object.z = pm.geodetic2ecef(
            lat=self.latitude, lon=self.longitude, alt=self.altitude, ell=self.ellipsoid, deg=self.use_degrees
        )

        return ecef_object

    def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
        """Converts coordinates to East North Up system.

        If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

        Args:
            ref_latitude (float, optional): reference latitude for ENU
            ref_longitude (float, optional): reference longitude for ENU
            ref_altitude (float, optional):  reference altitude for ENU

        Returns:
           (ENU): East North Up coordinate object

        """
        if self.altitude is None:
            self.altitude = np.zeros(self.latitude.shape)

        if ref_altitude is None:
            ref_altitude = np.amin(self.altitude)

        if ref_latitude is None:
            ref_latitude = np.amin(self.latitude)

        if ref_longitude is None:
            ref_longitude = np.amin(self.longitude)

        enu_object = ENU(ref_latitude=ref_latitude, ref_longitude=ref_longitude, ref_altitude=ref_altitude)

        enu_object.east, enu_object.north, enu_object.up = pm.geodetic2enu(
            lat=self.latitude,
            lon=self.longitude,
            h=self.altitude,
            lat0=ref_latitude,
            lon0=ref_longitude,
            h0=ref_altitude,
            ell=self.ellipsoid,
            deg=self.use_degrees,
        )

        return enu_object

nof_observations property

Number of observations contained in the class instance, implemented as dependent property.

from_array(array)

Unstack a numpy array into the corresponding coordinates.

The method has no return as it sets the corresponding attributes of the coordinate class instance.

Parameters:

Name Type Description Default
array ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

required
Source code in src/pyelq/coordinate_system.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def from_array(self, array):
    """Unstack a numpy array into the corresponding coordinates.

    The method has no return as it sets the corresponding attributes of the coordinate class instance.

    Args:
        array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
            array

    """
    dim = array.shape[1]
    self.latitude = array[:, 0]
    self.longitude = array[:, 1]
    self.altitude = np.zeros_like(self.latitude)
    if dim == 3:
        self.altitude = array[:, 2]

to_array(dim=3)

Stacks coordinates together into a numpy array.

Parameters:

Name Type Description Default
dim int

Number of dimensions to use, which is either 2 or 3.

3

Returns:

Type Description
ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

Source code in src/pyelq/coordinate_system.py
297
298
299
300
301
302
303
304
305
306
307
308
309
def to_array(self, dim=3):
    """Stacks coordinates together into a numpy array.

    Args:
        dim (int, optional): Number of dimensions to use, which is either 2 or 3.

    Returns:
        (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

    """
    if dim == 2:
        return np.stack((self.latitude.flatten(), self.longitude.flatten()), axis=1)
    return np.stack((self.latitude.flatten(), self.longitude.flatten(), self.altitude.flatten()), axis=1)

to_lla()

Source code in src/pyelq/coordinate_system.py
311
312
313
def to_lla(self):
    """LLA: Converts coordinates to latitude/longitude/altitude system."""
    return self

to_ecef()

Source code in src/pyelq/coordinate_system.py
315
316
317
318
319
320
321
322
323
324
def to_ecef(self):
    """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
    if self.altitude is None:
        self.altitude = np.zeros(self.latitude.shape)
    ecef_object = ECEF()
    ecef_object.x, ecef_object.y, ecef_object.z = pm.geodetic2ecef(
        lat=self.latitude, lon=self.longitude, alt=self.altitude, ell=self.ellipsoid, deg=self.use_degrees
    )

    return ecef_object

to_enu(ref_latitude=None, ref_longitude=None, ref_altitude=None)

Converts coordinates to East North Up system.

If a reference is not provided, the minimum of coordinates in Lat/Lon/Alt is used as the reference.

Parameters:

Name Type Description Default
ref_latitude float

reference latitude for ENU

None
ref_longitude float

reference longitude for ENU

None
ref_altitude float

reference altitude for ENU

None

Returns:

Type Description
ENU

East North Up coordinate object

Source code in src/pyelq/coordinate_system.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
    """Converts coordinates to East North Up system.

    If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

    Args:
        ref_latitude (float, optional): reference latitude for ENU
        ref_longitude (float, optional): reference longitude for ENU
        ref_altitude (float, optional):  reference altitude for ENU

    Returns:
       (ENU): East North Up coordinate object

    """
    if self.altitude is None:
        self.altitude = np.zeros(self.latitude.shape)

    if ref_altitude is None:
        ref_altitude = np.amin(self.altitude)

    if ref_latitude is None:
        ref_latitude = np.amin(self.latitude)

    if ref_longitude is None:
        ref_longitude = np.amin(self.longitude)

    enu_object = ENU(ref_latitude=ref_latitude, ref_longitude=ref_longitude, ref_altitude=ref_altitude)

    enu_object.east, enu_object.north, enu_object.up = pm.geodetic2enu(
        lat=self.latitude,
        lon=self.longitude,
        h=self.altitude,
        lat0=ref_latitude,
        lon0=ref_longitude,
        h0=ref_altitude,
        ell=self.ellipsoid,
        deg=self.use_degrees,
    )

    return enu_object

ENU dataclass

Bases: Coordinate

Defines the properties and functionality of a local East-North-Up coordinate system.

Positions relative to some reference location in metres.

Attributes:

Name Type Description
ref_latitude float

Reference latitude for current ENU system.

ref_longitude float

Reference longitude for current ENU system.

ref_altitude float

Reference altitude for current ENU system.

east ndarray

East values.

north ndarray

North values.

up ndarray

(np.ndarray): Up values.

Source code in src/pyelq/coordinate_system.py
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
@dataclass
class ENU(Coordinate):
    """Defines the properties and functionality of a local East-North-Up coordinate system.

     Positions relative to some reference location in metres.

    Attributes:
        ref_latitude (float): Reference latitude for current ENU system.
        ref_longitude (float): Reference longitude for current ENU system.
        ref_altitude (float): Reference altitude for current ENU system.
        east (np.ndarray): East values.
        north (np.ndarray): North values.
        up: (np.ndarray): Up values.

    """

    ref_latitude: float
    ref_longitude: float
    ref_altitude: float
    east: np.ndarray = None
    north: np.ndarray = None
    up: np.ndarray = None

    @property
    def nof_observations(self):
        """Number of observations contained in the class instance, implemented as dependent property."""
        if self.east is None:
            return 0
        return self.east.size

    def from_array(self, array):
        """Unstack a numpy array into the corresponding coordinates.

        The method has no return as it sets the corresponding attributes of the coordinate class instance.

        Args:
            array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
                array

        """
        dim = array.shape[1]
        self.east = array[:, 0]
        self.north = array[:, 1]
        self.up = np.zeros_like(self.east)
        if dim == 3:
            self.up = array[:, 2]

    def to_array(self, dim=3):
        """Stacks coordinates together into a numpy array.

        Args:
            dim (int, optional): Number of dimensions to use, which is either 2 or 3.

        Returns:
            (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

        """
        if dim == 2:
            return np.stack((self.east.flatten(), self.north.flatten()), axis=1)
        return np.stack((self.east.flatten(), self.north.flatten(), self.up.flatten()), axis=1)

    def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
        """Converts coordinates to East North Up system.

        If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

        Args:
            ref_latitude (float, optional): reference latitude for ENU
            ref_longitude (float, optional): reference longitude for ENU
            ref_altitude (float, optional):  reference altitude for ENU

        Returns:
           (ENU): East North Up coordinate object

        """
        if ref_latitude is None:
            ref_latitude = self.ref_latitude

        if ref_longitude is None:
            ref_longitude = self.ref_longitude

        if ref_altitude is None:
            ref_altitude = self.ref_altitude

        if (
            self.ref_latitude == ref_latitude
            and self.ref_longitude == ref_longitude
            and self.ref_altitude == ref_altitude
        ):
            return self

        ecef_temp = self.to_ecef()

        return ecef_temp.to_enu(ref_longitude=ref_longitude, ref_latitude=ref_latitude, ref_altitude=ref_altitude)

    def to_lla(self):
        """LLA: Converts coordinates to latitude/longitude/altitude system."""
        lla_object = LLA()

        lla_object.latitude, lla_object.longitude, lla_object.altitude = pm.enu2geodetic(
            e=self.east,
            n=self.north,
            u=self.up,
            lat0=self.ref_latitude,
            lon0=self.ref_longitude,
            h0=self.ref_altitude,
            ell=self.ellipsoid,
            deg=self.use_degrees,
        )

        return lla_object

    def to_ecef(self):
        """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
        ecef_object = ECEF()

        ecef_object.x, ecef_object.y, ecef_object.z = pm.enu2ecef(
            e1=self.east,
            n1=self.north,
            u1=self.up,
            lat0=self.ref_latitude,
            lon0=self.ref_longitude,
            h0=self.ref_altitude,
            ell=self.ellipsoid,
            deg=self.use_degrees,
        )

        return ecef_object

nof_observations property

Number of observations contained in the class instance, implemented as dependent property.

from_array(array)

Unstack a numpy array into the corresponding coordinates.

The method has no return as it sets the corresponding attributes of the coordinate class instance.

Parameters:

Name Type Description Default
array ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

required
Source code in src/pyelq/coordinate_system.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def from_array(self, array):
    """Unstack a numpy array into the corresponding coordinates.

    The method has no return as it sets the corresponding attributes of the coordinate class instance.

    Args:
        array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
            array

    """
    dim = array.shape[1]
    self.east = array[:, 0]
    self.north = array[:, 1]
    self.up = np.zeros_like(self.east)
    if dim == 3:
        self.up = array[:, 2]

to_array(dim=3)

Stacks coordinates together into a numpy array.

Parameters:

Name Type Description Default
dim int

Number of dimensions to use, which is either 2 or 3.

3

Returns:

Type Description
ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

Source code in src/pyelq/coordinate_system.py
415
416
417
418
419
420
421
422
423
424
425
426
427
def to_array(self, dim=3):
    """Stacks coordinates together into a numpy array.

    Args:
        dim (int, optional): Number of dimensions to use, which is either 2 or 3.

    Returns:
        (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

    """
    if dim == 2:
        return np.stack((self.east.flatten(), self.north.flatten()), axis=1)
    return np.stack((self.east.flatten(), self.north.flatten(), self.up.flatten()), axis=1)

to_enu(ref_latitude=None, ref_longitude=None, ref_altitude=None)

Converts coordinates to East North Up system.

If a reference is not provided, the minimum of coordinates in Lat/Lon/Alt is used as the reference.

Parameters:

Name Type Description Default
ref_latitude float

reference latitude for ENU

None
ref_longitude float

reference longitude for ENU

None
ref_altitude float

reference altitude for ENU

None

Returns:

Type Description
ENU

East North Up coordinate object

Source code in src/pyelq/coordinate_system.py
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
    """Converts coordinates to East North Up system.

    If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

    Args:
        ref_latitude (float, optional): reference latitude for ENU
        ref_longitude (float, optional): reference longitude for ENU
        ref_altitude (float, optional):  reference altitude for ENU

    Returns:
       (ENU): East North Up coordinate object

    """
    if ref_latitude is None:
        ref_latitude = self.ref_latitude

    if ref_longitude is None:
        ref_longitude = self.ref_longitude

    if ref_altitude is None:
        ref_altitude = self.ref_altitude

    if (
        self.ref_latitude == ref_latitude
        and self.ref_longitude == ref_longitude
        and self.ref_altitude == ref_altitude
    ):
        return self

    ecef_temp = self.to_ecef()

    return ecef_temp.to_enu(ref_longitude=ref_longitude, ref_latitude=ref_latitude, ref_altitude=ref_altitude)

to_lla()

Source code in src/pyelq/coordinate_system.py
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def to_lla(self):
    """LLA: Converts coordinates to latitude/longitude/altitude system."""
    lla_object = LLA()

    lla_object.latitude, lla_object.longitude, lla_object.altitude = pm.enu2geodetic(
        e=self.east,
        n=self.north,
        u=self.up,
        lat0=self.ref_latitude,
        lon0=self.ref_longitude,
        h0=self.ref_altitude,
        ell=self.ellipsoid,
        deg=self.use_degrees,
    )

    return lla_object

to_ecef()

Source code in src/pyelq/coordinate_system.py
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
def to_ecef(self):
    """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
    ecef_object = ECEF()

    ecef_object.x, ecef_object.y, ecef_object.z = pm.enu2ecef(
        e1=self.east,
        n1=self.north,
        u1=self.up,
        lat0=self.ref_latitude,
        lon0=self.ref_longitude,
        h0=self.ref_altitude,
        ell=self.ellipsoid,
        deg=self.use_degrees,
    )

    return ecef_object

ECEF dataclass

Bases: Coordinate

Defines the properties and functionality of an Earth-Centered, Earth-Fixed coordinate system.

See: https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system

Attributes:

Name Type Description
x ndarray

Eastings values [metres]

y ndarray

Northings values [metres]

z ndarray

Altitude values [metres]

Source code in src/pyelq/coordinate_system.py
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
@dataclass
class ECEF(Coordinate):
    """Defines the properties and functionality of an Earth-Centered, Earth-Fixed coordinate system.

    See: https://en.wikipedia.org/wiki/Earth-centered,_Earth-fixed_coordinate_system

    Attributes:
        x (np.ndarray): Eastings values [metres]
        y (np.ndarray): Northings values [metres]
        z (np.ndarray): Altitude values [metres]

    """

    x: np.ndarray = None
    y: np.ndarray = None
    z: np.ndarray = None

    @property
    def nof_observations(self):
        """Number of observations contained in the class instance, implemented as dependent property."""
        if self.x is None:
            return 0
        return self.x.size

    def from_array(self, array):
        """Unstack a numpy array into the corresponding coordinates.

        The method has no return as it sets the corresponding attributes of the coordinate class instance.

        Args:
            array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
                array

        """
        dim = array.shape[1]
        self.x = array[:, 0]
        self.y = array[:, 1]
        self.z = np.zeros_like(self.x)
        if dim == 3:
            self.z = array[:, 2]

    def to_array(self, dim=3):
        """Stacks coordinates together into a numpy array.

        Args:
            dim (int, optional): Number of dimensions to use, which is either 2 or 3.

        Returns:
            (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

        """
        if dim == 2:
            return np.stack((self.x.flatten(), self.y.flatten()), axis=1)
        return np.stack((self.x.flatten(), self.y.flatten(), self.z.flatten()), axis=1)

    def to_ecef(self):
        """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
        return self

    def to_lla(self):
        """LLA: Converts coordinates to latitude/longitude/altitude system."""
        lla_object = LLA()

        lla_object.latitude, lla_object.longitude, lla_object.altitude = pm.ecef2geodetic(
            self.x, self.y, self.z, ell=self.ellipsoid, deg=self.use_degrees
        )

        return lla_object

    def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
        """Converts coordinates to East North Up system.

        If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

        Args:
            ref_latitude (float, optional): reference latitude for ENU
            ref_longitude (float, optional): reference longitude for ENU
            ref_altitude (float, optional):  reference altitude for ENU

        Returns:
           (ENU): East North Up coordinate object

        """
        if ref_latitude is None or ref_longitude is None or ref_altitude is None:
            lla_object = self.to_lla()
            return lla_object.to_enu()

        enu_object = ENU(ref_latitude=ref_latitude, ref_longitude=ref_longitude, ref_altitude=ref_altitude)

        enu_object.east, enu_object.north, enu_object.up = pm.ecef2enu(
            x=self.x,
            y=self.y,
            z=self.z,
            lat0=ref_latitude,
            lon0=ref_longitude,
            h0=ref_altitude,
            ell=self.ellipsoid,
            deg=self.use_degrees,
        )

        return enu_object

nof_observations property

Number of observations contained in the class instance, implemented as dependent property.

from_array(array)

Unstack a numpy array into the corresponding coordinates.

The method has no return as it sets the corresponding attributes of the coordinate class instance.

Parameters:

Name Type Description Default
array ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

required
Source code in src/pyelq/coordinate_system.py
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def from_array(self, array):
    """Unstack a numpy array into the corresponding coordinates.

    The method has no return as it sets the corresponding attributes of the coordinate class instance.

    Args:
        array (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single
            array

    """
    dim = array.shape[1]
    self.x = array[:, 0]
    self.y = array[:, 1]
    self.z = np.zeros_like(self.x)
    if dim == 3:
        self.z = array[:, 2]

to_array(dim=3)

Stacks coordinates together into a numpy array.

Parameters:

Name Type Description Default
dim int

Number of dimensions to use, which is either 2 or 3.

3

Returns:

Type Description
ndarray

Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

Source code in src/pyelq/coordinate_system.py
539
540
541
542
543
544
545
546
547
548
549
550
551
def to_array(self, dim=3):
    """Stacks coordinates together into a numpy array.

    Args:
        dim (int, optional): Number of dimensions to use, which is either 2 or 3.

    Returns:
        (np.ndarray): Numpy array of size [n x dim] with n>0 containing the coordinates stacked into a single array

    """
    if dim == 2:
        return np.stack((self.x.flatten(), self.y.flatten()), axis=1)
    return np.stack((self.x.flatten(), self.y.flatten(), self.z.flatten()), axis=1)

to_ecef()

Source code in src/pyelq/coordinate_system.py
553
554
555
def to_ecef(self):
    """ECEF: Convert coordinates to earth centered earth fixed coordinates."""
    return self

to_lla()

Source code in src/pyelq/coordinate_system.py
557
558
559
560
561
562
563
564
565
def to_lla(self):
    """LLA: Converts coordinates to latitude/longitude/altitude system."""
    lla_object = LLA()

    lla_object.latitude, lla_object.longitude, lla_object.altitude = pm.ecef2geodetic(
        self.x, self.y, self.z, ell=self.ellipsoid, deg=self.use_degrees
    )

    return lla_object

to_enu(ref_latitude=None, ref_longitude=None, ref_altitude=None)

Converts coordinates to East North Up system.

If a reference is not provided, the minimum of coordinates in Lat/Lon/Alt is used as the reference.

Parameters:

Name Type Description Default
ref_latitude float

reference latitude for ENU

None
ref_longitude float

reference longitude for ENU

None
ref_altitude float

reference altitude for ENU

None

Returns:

Type Description
ENU

East North Up coordinate object

Source code in src/pyelq/coordinate_system.py
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
def to_enu(self, ref_latitude=None, ref_longitude=None, ref_altitude=None):
    """Converts coordinates to East North Up system.

    If a reference is not provided, the  minimum of coordinates in Lat/Lon/Alt is used as the reference.

    Args:
        ref_latitude (float, optional): reference latitude for ENU
        ref_longitude (float, optional): reference longitude for ENU
        ref_altitude (float, optional):  reference altitude for ENU

    Returns:
       (ENU): East North Up coordinate object

    """
    if ref_latitude is None or ref_longitude is None or ref_altitude is None:
        lla_object = self.to_lla()
        return lla_object.to_enu()

    enu_object = ENU(ref_latitude=ref_latitude, ref_longitude=ref_longitude, ref_altitude=ref_altitude)

    enu_object.east, enu_object.north, enu_object.up = pm.ecef2enu(
        x=self.x,
        y=self.y,
        z=self.z,
        lat0=ref_latitude,
        lon0=ref_longitude,
        h0=ref_altitude,
        ell=self.ellipsoid,
        deg=self.use_degrees,
    )

    return enu_object

make_latin_hypercube(bounds, nof_samples)

Latin Hypercube samples.

Draw samples according to a Latin Hypercube design within the specified bounds.

Parameters:

Name Type Description Default
bounds ndarray

Limits of the resulting hypercube of size [dim x 2]

required
nof_samples int

Number of samples to draw

required

Returns:

Name Type Description
array ndarray

Samples forming the Latin Hypercube

Source code in src/pyelq/coordinate_system.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def make_latin_hypercube(bounds: np.ndarray, nof_samples: int) -> np.ndarray:
    """Latin Hypercube samples.

    Draw samples according to a Latin Hypercube design within the specified bounds.

    Args:
        bounds (np.ndarray): Limits of the resulting hypercube of size [dim x 2]
        nof_samples (int): Number of samples to draw

    Returns:
        array (np.ndarray): Samples forming the Latin Hypercube

    """
    dimension = bounds.shape[0]
    sampler = qmc.LatinHypercube(d=dimension)
    sample = sampler.random(n=nof_samples)
    array = qmc.scale(sample, np.min(bounds, axis=1), np.max(bounds, axis=1))
    return array