Skip to content

Gaussian Plume

Gaussian Plume module.

The class for the Gaussian Plume dispersion model used in pyELQ.

The Mathematics of Atmospheric Dispersion Modeling, John M. Stockie, DOI. 10.1137/10080991X

GaussianPlume dataclass

Defines the Gaussian plume dispersion model class.

Attributes:

Name Type Description
source_map Sourcemap

SourceMap object used for the dispersion model

source_half_width float

Source half width (radius) to be used in the Gaussian plume model (in meters)

minimum_contribution float

All elements in the Gaussian plume coupling smaller than this number will be set to 0. Helps to speed up matrix multiplications/matrix inverses, also helps with stability

Source code in src/pyelq/dispersion_model/gaussian_plume.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
@dataclass
class GaussianPlume:
    """Defines the Gaussian plume dispersion model class.

    Attributes:
        source_map (Sourcemap): SourceMap object used for the dispersion model
        source_half_width (float): Source half width (radius) to be used in the Gaussian plume model (in meters)
        minimum_contribution (float): All elements in the Gaussian plume coupling smaller than this number will be set
            to 0. Helps to speed up matrix multiplications/matrix inverses, also helps with stability

    """

    source_map: SourceMap
    source_half_width: float = 1
    minimum_contribution: float = 0

    def compute_coupling(
        self,
        sensor_object: Union[SensorGroup, Sensor],
        meteorology_object: Union[MeteorologyGroup, Meteorology],
        gas_object: GasSpecies = None,
        output_stacked: bool = False,
        run_interpolation: bool = True,
    ) -> Union[list, np.ndarray, dict]:
        """Top level function to calculate the Gaussian plume coupling.

        Calculates the coupling for either a single sensor object or a dictionary of sensor objects.

        When both a SensorGroup and a MeteorologyGroup have been passed in, we assume they are consistent and contain
        exactly the same keys for each item in both groups. Also assuming interpolation has been performed and time axes
        are consistent, so we set run_interpolation to False

        When you input a SensorGroup and a single Meteorology object we convert this object into a dictionary, so we
        don't have to duplicate the same code.

        Args:
            sensor_object (Union[SensorGroup, Sensor]): Single sensor object or SensorGroup object which is used in the
                calculation of the plume coupling.
            meteorology_object (Union[MeteorologyGroup, Meteorology]): Meteorology object or MeteorologyGroup object
                which is used in the calculation of the plume coupling.
            gas_object (GasSpecies, optional): Optional input, a gas species object to correctly calculate the
                gas density which is used in the conversion of the units of the Gaussian plume coupling
            output_stacked (bool, optional): if true outputs as stacked np.array across sensors if not
                outputs as dict
            run_interpolation (bool, optional): logical indicating whether interpolation of the meteorological data to
                the sensor/source is required. Defaults to True.

        Returns:
            plume_coupling (Union[list, np.ndarray, dict]): List of arrays, single array or dictionary containing the
                plume coupling in hr/kg. When a single source object is passed in as input this function returns a list
                or an array depending on the sensor type.
                If a dictionary of sensor objects is passed in as input and output_stacked=False  this function returns
                a dictionary consistent with the input dictionary keys, containing the corresponding plume coupling
                outputs for each sensor.
                If a dictionary of sensor objects is passed in as input and output_stacked=True  this function returns
                a np.array containing the stacked coupling matrices.

        """
        if isinstance(sensor_object, SensorGroup):
            output = {}
            if isinstance(meteorology_object, Meteorology):
                meteorology_object = dict.fromkeys(sensor_object.keys(), meteorology_object)
            elif isinstance(meteorology_object, MeteorologyGroup):
                run_interpolation = False

            for sensor_key in sensor_object:
                output[sensor_key] = self.compute_coupling_single_sensor(
                    sensor_object=sensor_object[sensor_key],
                    meteorology=meteorology_object[sensor_key],
                    gas_object=gas_object,
                    run_interpolation=run_interpolation,
                )
            if output_stacked:
                output = np.concatenate(tuple(output.values()), axis=0)

        elif isinstance(sensor_object, Sensor):
            if isinstance(meteorology_object, MeteorologyGroup):
                raise TypeError("Please provide a single Meteorology object when using a single Sensor object")

            output = self.compute_coupling_single_sensor(
                sensor_object=sensor_object,
                meteorology=meteorology_object,
                gas_object=gas_object,
                run_interpolation=run_interpolation,
            )
        else:
            raise TypeError("Please provide either a Sensor or SensorGroup as input argument")

        return output

    def compute_coupling_single_sensor(
        self,
        sensor_object: Sensor,
        meteorology: Meteorology,
        gas_object: GasSpecies = None,
        run_interpolation: bool = True,
    ) -> Union[list, np.ndarray]:
        """Wrapper function to compute the gaussian plume coupling for a single sensor.

        Wrapper is used to identify specific cases and calculate the Gaussian plume coupling accordingly.

        When the sensor object contains the source_on attribute we set all coupling values to 0 for observations for
        which source_on is False. Making sure the source_on is column array, aligning with the 1st dimension
        (nof_observations) of the plume coupling array.

        Args:
            sensor_object (Sensor): Single sensor object which is used in the calculation of the plume coupling
            meteorology (Meteorology): Meteorology object which is used in the calculation of the plume coupling
            gas_object (GasSpecies, optional): Optionally input a gas species object to correctly calculate the
                gas density which is used in the conversion of the units of the Gaussian plume coupling
            run_interpolation (bool): logical indicating whether interpolation of the meteorological data to
                the sensor/source is required. Default passed from compute_coupling.

        Returns:
            plume_coupling (Union[list, np.ndarray]): List of arrays or single array containing the plume coupling
                in 1e6*[hr/kg]. Entries of the list are per source in the case of a satellite sensor, if a single array
                is returned the coupling for each observation (first dimension) to each source (second dimension) is
                provided.

        """
        if not isinstance(sensor_object, Sensor):
            raise NotImplementedError("Please provide a valid sensor type")

        (
            gas_density,
            u_interpolated,
            v_interpolated,
            wind_turbulence_horizontal,
            wind_turbulence_vertical,
        ) = self.interpolate_all_meteorology(
            meteorology=meteorology,
            sensor_object=sensor_object,
            gas_object=gas_object,
            run_interpolation=run_interpolation,
        )

        wind_speed = np.sqrt(u_interpolated**2 + v_interpolated**2)
        theta = np.arctan2(v_interpolated, u_interpolated)

        if isinstance(sensor_object, Satellite):
            plume_coupling = self.compute_coupling_satellite(
                sensor_object=sensor_object,
                wind_speed=wind_speed,
                theta=theta,
                wind_turbulence_horizontal=wind_turbulence_horizontal,
                wind_turbulence_vertical=wind_turbulence_vertical,
                gas_density=gas_density,
            )

        else:
            plume_coupling = self.compute_coupling_ground(
                sensor_object=sensor_object,
                wind_speed=wind_speed,
                theta=theta,
                wind_turbulence_horizontal=wind_turbulence_horizontal,
                wind_turbulence_vertical=wind_turbulence_vertical,
                gas_density=gas_density,
            )

        if sensor_object.source_on is not None:
            plume_coupling = plume_coupling * sensor_object.source_on[:, None]

        return plume_coupling

    def compute_coupling_array(
        self,
        sensor_x: np.ndarray,
        sensor_y: np.ndarray,
        sensor_z: np.ndarray,
        source_z: np.ndarray,
        wind_speed: np.ndarray,
        theta: np.ndarray,
        wind_turbulence_horizontal: np.ndarray,
        wind_turbulence_vertical: np.ndarray,
        gas_density: Union[float, np.ndarray],
    ) -> np.ndarray:
        """Compute the Gaussian plume coupling.

        Most low level function to calculate the Gaussian plume coupling. Assuming input shapes are consistent but no
        checking is done on this.

        Setting sigma_vert to 1e-16 when it is identically zero (distance_x == 0) so we don't get a divide by 0 error
        all the time.

        Args:
            sensor_x (np.ndarray): sensor x location relative to source [m].
            sensor_y (np.ndarray): sensor y location relative to source [m].
            sensor_z (np.ndarray): sensor z location relative to ground height [m].
            source_z (np.ndarray): source z location relative to ground height [m].
            wind_speed (np.ndarray): wind speed at source locations in [m/s].
            theta (np.ndarray): Mathematical wind direction at source locations [radians]:
                calculated as np.arctan2(v_component_wind, u_component_wind).
            wind_turbulence_horizontal (np.ndarray): Horizontal wind turbulence [deg].
            wind_turbulence_vertical (np.ndarray): Vertical wind turbulence [deg].
            gas_density (Union[float, np.ndarray]): Gas density to use in coupling calculation [kg/m^3].

        Returns:
            plume_coupling (np.ndarray): Gaussian plume coupling in (1e6)*[hr/kg]: gives concentrations
                in [ppm] when multiplied by sources in [kg/hr].

        """
        cos_theta = np.cos(theta)
        sin_theta = np.sin(theta)

        distance_x = cos_theta * sensor_x + sin_theta * sensor_y
        if np.all(distance_x < 0):
            return np.zeros_like(distance_x)

        distance_y = -sin_theta * sensor_x + cos_theta * sensor_y

        sigma_hor = np.tan(wind_turbulence_horizontal * (np.pi / 180)) * np.abs(distance_x) + self.source_half_width
        sigma_vert = np.tan(wind_turbulence_vertical * (np.pi / 180)) * np.abs(distance_x)

        sigma_vert[sigma_vert == 0] = 1e-16

        plume_coupling = (
            (1 / (2 * np.pi * wind_speed * sigma_hor * sigma_vert))
            * np.exp(-0.5 * (distance_y / sigma_hor) ** 2)
            * (
                np.exp(-0.5 * (((sensor_z + source_z) / sigma_vert) ** 2))
                + np.exp(-0.5 * (((sensor_z - source_z) / sigma_vert) ** 2))
            )
        )

        plume_coupling = np.divide(np.multiply(plume_coupling, 1e6), (gas_density * 3600))
        plume_coupling[np.logical_or(distance_x < 0, plume_coupling < self.minimum_contribution)] = 0

        return plume_coupling

    def calculate_gas_density(
        self, meteorology: Meteorology, sensor_object: Sensor, gas_object: Union[GasSpecies, None]
    ) -> np.ndarray:
        """Helper function to calculate the gas density using ideal gas law.

        https://en.wikipedia.org/wiki/Ideal_gas

        When a gas object is passed as input we calculate the density according to that gas. We check if the
        meteorology object has a temperature and/or pressure value and use those accordingly. Otherwise, we use Standard
        Temperature and Pressure (STP).

        We interpolate the temperature and pressure values to the source locations/times such that this is consistent
        with the other calculations, i.e. we only do spatial interpolation when the sensor is a Satellite object
        and temporal interpolation otherwise.

        When no gas_object is passed in we just set the gas density value to 1.

        Args:
            meteorology (Meteorology): Meteorology object potentially containing temperature or pressure values
            sensor_object (Sensor): Sensor object containing information about where to interpolate to
            gas_object (Union[GasSpecies, None]): Gas species object which actually calculates the correct density

        Returns:
            gas_density (np.ndarray): Numpy array of shape [1 x nof_sources] (Satellite sensor)
                or [nof_observations x 1] (otherwise) containing the gas density values to use

        """
        if not isinstance(gas_object, GasSpecies):
            if isinstance(sensor_object, Satellite):
                return np.ones((1, self.source_map.nof_sources))
            return np.ones((sensor_object.nof_observations, 1))

        temperature_interpolated = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="temperature", sensor_object=sensor_object
        )
        if temperature_interpolated is None:
            temperature_interpolated = np.array([[273.15]])

        pressure_interpolated = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="pressure", sensor_object=sensor_object
        )
        if pressure_interpolated is None:
            pressure_interpolated = np.array([[101.325]])

        gas_density = gas_object.gas_density(temperature=temperature_interpolated, pressure=pressure_interpolated)

        return gas_density

    def interpolate_all_meteorology(
        self, sensor_object: Sensor, meteorology: Meteorology, gas_object: GasSpecies, run_interpolation: bool
    ):
        """Function which carries out interpolation of all meteorological information.

        The flag run_interpolation determines whether the interpolation should be carried out. If this
        is set to be False, the meteorological parameters are simply set to the values stored on the
        meteorology object (i.e. we assume that the meteorology has already been interpolated). This
        functionality is required to avoid wasted computation in the case of e.g. a reversible jump run.

        Args:
            sensor_object (Sensor): object containing locations/times onto which met information should
                be interpolated.
            meteorology (Meteorology): object containing meteorology information for interpolation.
            gas_object (GasSpecies): object containing gas information.
            run_interpolation (bool): logical indicating whether the meteorology information needs to be interpolated.

        Returns:
            gas_density (np.ndarray): numpy array of shape [n_data x 1] of gas densities.
            u_interpolated (np.ndarray): numpy array of shape [n_data x 1] of northerly wind components.
            v_interpolated (np.ndarray): numpy array of shape [n_data x 1] of easterly wind components.
            wind_turbulence_horizontal (np.ndarray): numpy array of shape [n_data x 1] of horizontal turbulence
                parameters.
            wind_turbulence_vertical (np.ndarray): numpy array of shape [n_data x 1] of vertical turbulence
                parameters.

        """
        if run_interpolation:
            gas_density = self.calculate_gas_density(
                meteorology=meteorology, sensor_object=sensor_object, gas_object=gas_object
            )
            u_interpolated = self.interpolate_meteorology(
                meteorology=meteorology, variable_name="u_component", sensor_object=sensor_object
            )
            v_interpolated = self.interpolate_meteorology(
                meteorology=meteorology, variable_name="v_component", sensor_object=sensor_object
            )
            wind_turbulence_horizontal = self.interpolate_meteorology(
                meteorology=meteorology, variable_name="wind_turbulence_horizontal", sensor_object=sensor_object
            )
            wind_turbulence_vertical = self.interpolate_meteorology(
                meteorology=meteorology, variable_name="wind_turbulence_vertical", sensor_object=sensor_object
            )
        else:
            gas_density = gas_object.gas_density(temperature=meteorology.temperature, pressure=meteorology.pressure)
            gas_density = gas_density.reshape((gas_density.size, 1))
            u_interpolated = meteorology.u_component.reshape((meteorology.u_component.size, 1))
            v_interpolated = meteorology.v_component.reshape((meteorology.v_component.size, 1))
            wind_turbulence_horizontal = meteorology.wind_turbulence_horizontal.reshape(
                (meteorology.wind_turbulence_horizontal.size, 1)
            )
            wind_turbulence_vertical = meteorology.wind_turbulence_vertical.reshape(
                (meteorology.wind_turbulence_vertical.size, 1)
            )

        return gas_density, u_interpolated, v_interpolated, wind_turbulence_horizontal, wind_turbulence_vertical

    def interpolate_meteorology(
        self, meteorology: Meteorology, variable_name: str, sensor_object: Sensor
    ) -> Union[np.ndarray, None]:
        """Helper function to interpolate meteorology variables.

        This function interpolates meteorological variables to times in Sensor or Sources in sourcemap. It also
        calculates the wind speed and mathematical angle between the u- and v-components which in turn gets used in the
        calculation of the Gaussian plume.

        When the input sensor object is a Satellite type we use spatial interpolation using the interpolation method
        from the coordinate system class as this takes care of the coordinate systems.
        When the input sensor object is of another time we use temporal interpolation (assumption is spatial uniformity
        for all observations over a small(er) area).

        Args:
            meteorology (Meteorology): Meteorology object containing u- and v-components of wind including their
                spatial location
            variable_name (str): String name of an attribute in the meteorology input object which needs to be
                interpolated
            sensor_object (Sensor): Sensor object containing information about where to interpolate to

        Returns:
            variable_interpolated (np.ndarray): Interpolated values

        """
        variable = getattr(meteorology, variable_name)
        if variable is None:
            return None

        if isinstance(sensor_object, Satellite):
            variable_interpolated = meteorology.location.interpolate(variable, self.source_map.location)
            variable_interpolated = variable_interpolated.reshape(1, self.source_map.nof_sources)
        else:
            variable_interpolated = sti.interpolate(
                time_in=meteorology.time, values_in=variable, time_out=sensor_object.time
            )
            variable_interpolated = variable_interpolated.reshape(sensor_object.nof_observations, 1)
        return variable_interpolated

    def compute_coupling_satellite(
        self,
        sensor_object: Sensor,
        wind_speed: np.ndarray,
        theta: np.ndarray,
        wind_turbulence_horizontal: np.ndarray,
        wind_turbulence_vertical: np.ndarray,
        gas_density: np.ndarray,
    ) -> list:
        """Compute Gaussian plume coupling for satellite sensor.

        When the sensor is a Satellite object we calculate the plume coupling per source. Given the large number of
        sources and the possibility of using the inclusion radius and inclusion indices here and validity of a local
        ENU system over large distances we loop over each source and calculate the coupling on a per-source basis.

        If source_map.inclusion_n_obs is None, we do not do any filtering on observations and we want to include all
        observations in the plume coupling calculations.

        All np.ndarray inputs should have a shape of [1 x nof_sources]

        Args:
            sensor_object (Sensor): Sensor object used in plume coupling calculation
            wind_speed (np.ndarray): Wind speed [m/s]
            theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
            wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
            wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
            gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

        Returns:
            plume_coupling (list): List of Gaussian plume coupling 1e6*[hr/kg] arrays. The list has a length of
                nof_sources, each array has the shape [nof_observations x 1] or [inclusion_n_obs x 1] when
                inclusion_idx is used.

        """
        plume_coupling = []

        source_map_location_lla = self.source_map.location.to_lla()
        for current_source in range(self.source_map.nof_sources):
            if self.source_map.inclusion_n_obs is None:
                enu_sensor_array = sensor_object.location.to_enu(
                    ref_latitude=source_map_location_lla.latitude[current_source],
                    ref_longitude=source_map_location_lla.longitude[current_source],
                    ref_altitude=0,
                ).to_array()

            else:
                if self.source_map.inclusion_n_obs[current_source] == 0:
                    plume_coupling.append(np.array([]))
                    continue

                enu_sensor_array = _create_enu_sensor_array(
                    inclusion_idx=self.source_map.inclusion_idx[current_source],
                    sensor_object=sensor_object,
                    source_map_location_lla=source_map_location_lla,
                    current_source=current_source,
                )

            temp_coupling = self.compute_coupling_array(
                enu_sensor_array[:, [0]],
                enu_sensor_array[:, [1]],
                enu_sensor_array[:, [2]],
                source_map_location_lla.altitude[current_source],
                wind_speed[:, current_source],
                theta[:, current_source],
                wind_turbulence_horizontal[:, current_source],
                wind_turbulence_vertical[:, current_source],
                gas_density[:, current_source],
            )

            plume_coupling.append(temp_coupling)

        return plume_coupling

    def compute_coupling_ground(
        self,
        sensor_object: Sensor,
        wind_speed: np.ndarray,
        theta: np.ndarray,
        wind_turbulence_horizontal: np.ndarray,
        wind_turbulence_vertical: np.ndarray,
        gas_density: np.ndarray,
    ) -> np.ndarray:
        """Compute Gaussian plume coupling for a ground sensor.

        If the source map is already defined as ENU the reference location is maintained but the sensor is checked
        to make sure the same reference location is used. Otherwise, when converting to ENU object for the sensor
        observations we use a single source and altitude 0 as the reference location. This way our ENU system is a
        system w.r.t. ground level which is required for the current implementation of the actual coupling calculation.

        When the sensor is a Beam object we calculate the plume coupling for all sources to all beam knot locations at
        once in the same ENU coordinate system and finally averaged over the beam knots to get the final output.

        In general, we calculate the coupling from all sources to all sensor observation locations. In order to achieve
        this we input the sensor array as column and source array as row vector in calculating relative x etc.,
        with the beam knot locations being the third dimension. When the sensor is a single point Sensor or a Drone
        sensor we effectively have one beam knot, making the mean operation at the end effectively a reshape operation
        which gets rid of the third dimension.

        All np.ndarray inputs should have a shape of [nof_observations x 1]

        Args:
            sensor_object (Sensor): Sensor object used in plume coupling calculation
            wind_speed (np.ndarray): Wind speed [m/s]
            theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
            wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
            wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
            gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

        Returns:
            plume_coupling (np.ndarray): Gaussian plume coupling 1e6*[hr/kg] array. The array has the
                shape [nof_observations x nof_sources]

        """
        if not isinstance(self.source_map.location, ENU):
            source_map_lla = self.source_map.location.to_lla()
            source_map_enu = source_map_lla.to_enu(
                ref_latitude=source_map_lla.latitude[0], ref_longitude=source_map_lla.longitude[0], ref_altitude=0
            )
        else:
            source_map_enu = self.source_map.location

        enu_source_array = source_map_enu.to_array()

        if isinstance(sensor_object, Beam):
            enu_sensor_array = sensor_object.make_beam_knots(
                ref_latitude=source_map_enu.ref_latitude,
                ref_longitude=source_map_enu.ref_longitude,
                ref_altitude=source_map_enu.ref_altitude,
            )
            relative_x = np.subtract(enu_sensor_array[:, 0][None, None, :], enu_source_array[:, 0][None, :, None])
            relative_y = np.subtract(enu_sensor_array[:, 1][None, None, :], enu_source_array[:, 1][None, :, None])
            z_sensor = enu_sensor_array[:, 2][None, None, :]
        else:
            enu_sensor_array = sensor_object.location.to_enu(
                ref_latitude=source_map_enu.ref_latitude,
                ref_longitude=source_map_enu.ref_longitude,
                ref_altitude=source_map_enu.ref_altitude,
            ).to_array()
            relative_x = np.subtract(enu_sensor_array[:, 0][:, None, None], enu_source_array[:, 0][None, :, None])
            relative_y = np.subtract(enu_sensor_array[:, 1][:, None, None], enu_source_array[:, 1][None, :, None])
            z_sensor = enu_sensor_array[:, 2][:, None, None]

        z_source = enu_source_array[:, 2][None, :, None]

        plume_coupling = self.compute_coupling_array(
            relative_x,
            relative_y,
            z_sensor,
            z_source,
            wind_speed[:, :, None],
            theta[:, :, None],
            wind_turbulence_horizontal[:, :, None],
            wind_turbulence_vertical[:, :, None],
            gas_density[:, :, None],
        )

        plume_coupling = plume_coupling.mean(axis=2)

        return plume_coupling

    @staticmethod
    def compute_coverage(
        couplings: np.ndarray, threshold_function: Callable, coverage_threshold: float = 6, **kwargs
    ) -> Union[np.ndarray, dict]:
        """Returns a logical vector that indicates which sources in the couplings are, or are not, within the coverage.

        The 'coverage' is the area inside which all sources are well covered by wind data. E.g. If wind exclusively
        blows towards East, then all sources to the East of any sensor are 'invisible', and are not within the coverage.

        Couplings are returned in hr/kg. Some threshold function defines the largest allowed coupling value. This is
        used to calculate estimated emission rates in kg/hr. Any emissions which are greater than the value of
        'coverage_threshold' are defined as not within the coverage.

        Args:
            couplings (np.ndarray): Array of coupling values. Dimensions: n_datapoints x n_sources.
            threshold_function (Callable): Callable function which returns some single value that defines the
                maximum or 'threshold' coupling. For example: np.quantile(., q=0.95)
            coverage_threshold (float, optional): The threshold value of the estimated emission rate which is
                considered to be within the coverage. Defaults to 6 kg/hr.
            kwargs (dict, optional): Keyword arguments required for the threshold function.

        Returns:
            coverage (Union[np.ndarray, dict]): A logical array specifying which sources are within the coverage.

        """
        coupling_threshold = threshold_function(couplings, **kwargs)
        no_warning_threshold = np.where(coupling_threshold <= 1e-100, 1, coupling_threshold)
        no_warning_estimated_emission_rates = np.where(coupling_threshold <= 1e-100, np.inf, 1 / no_warning_threshold)
        coverage = no_warning_estimated_emission_rates < coverage_threshold

        return coverage

compute_coupling(sensor_object, meteorology_object, gas_object=None, output_stacked=False, run_interpolation=True)

Top level function to calculate the Gaussian plume coupling.

Calculates the coupling for either a single sensor object or a dictionary of sensor objects.

When both a SensorGroup and a MeteorologyGroup have been passed in, we assume they are consistent and contain exactly the same keys for each item in both groups. Also assuming interpolation has been performed and time axes are consistent, so we set run_interpolation to False

When you input a SensorGroup and a single Meteorology object we convert this object into a dictionary, so we don't have to duplicate the same code.

Parameters:

Name Type Description Default
sensor_object Union[SensorGroup, Sensor]

Single sensor object or SensorGroup object which is used in the calculation of the plume coupling.

required
meteorology_object Union[MeteorologyGroup, Meteorology]

Meteorology object or MeteorologyGroup object which is used in the calculation of the plume coupling.

required
gas_object GasSpecies

Optional input, a gas species object to correctly calculate the gas density which is used in the conversion of the units of the Gaussian plume coupling

None
output_stacked bool

if true outputs as stacked np.array across sensors if not outputs as dict

False
run_interpolation bool

logical indicating whether interpolation of the meteorological data to the sensor/source is required. Defaults to True.

True

Returns:

Name Type Description
plume_coupling Union[list, ndarray, dict]

List of arrays, single array or dictionary containing the plume coupling in hr/kg. When a single source object is passed in as input this function returns a list or an array depending on the sensor type. If a dictionary of sensor objects is passed in as input and output_stacked=False this function returns a dictionary consistent with the input dictionary keys, containing the corresponding plume coupling outputs for each sensor. If a dictionary of sensor objects is passed in as input and output_stacked=True this function returns a np.array containing the stacked coupling matrices.

Source code in src/pyelq/dispersion_model/gaussian_plume.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def compute_coupling(
    self,
    sensor_object: Union[SensorGroup, Sensor],
    meteorology_object: Union[MeteorologyGroup, Meteorology],
    gas_object: GasSpecies = None,
    output_stacked: bool = False,
    run_interpolation: bool = True,
) -> Union[list, np.ndarray, dict]:
    """Top level function to calculate the Gaussian plume coupling.

    Calculates the coupling for either a single sensor object or a dictionary of sensor objects.

    When both a SensorGroup and a MeteorologyGroup have been passed in, we assume they are consistent and contain
    exactly the same keys for each item in both groups. Also assuming interpolation has been performed and time axes
    are consistent, so we set run_interpolation to False

    When you input a SensorGroup and a single Meteorology object we convert this object into a dictionary, so we
    don't have to duplicate the same code.

    Args:
        sensor_object (Union[SensorGroup, Sensor]): Single sensor object or SensorGroup object which is used in the
            calculation of the plume coupling.
        meteorology_object (Union[MeteorologyGroup, Meteorology]): Meteorology object or MeteorologyGroup object
            which is used in the calculation of the plume coupling.
        gas_object (GasSpecies, optional): Optional input, a gas species object to correctly calculate the
            gas density which is used in the conversion of the units of the Gaussian plume coupling
        output_stacked (bool, optional): if true outputs as stacked np.array across sensors if not
            outputs as dict
        run_interpolation (bool, optional): logical indicating whether interpolation of the meteorological data to
            the sensor/source is required. Defaults to True.

    Returns:
        plume_coupling (Union[list, np.ndarray, dict]): List of arrays, single array or dictionary containing the
            plume coupling in hr/kg. When a single source object is passed in as input this function returns a list
            or an array depending on the sensor type.
            If a dictionary of sensor objects is passed in as input and output_stacked=False  this function returns
            a dictionary consistent with the input dictionary keys, containing the corresponding plume coupling
            outputs for each sensor.
            If a dictionary of sensor objects is passed in as input and output_stacked=True  this function returns
            a np.array containing the stacked coupling matrices.

    """
    if isinstance(sensor_object, SensorGroup):
        output = {}
        if isinstance(meteorology_object, Meteorology):
            meteorology_object = dict.fromkeys(sensor_object.keys(), meteorology_object)
        elif isinstance(meteorology_object, MeteorologyGroup):
            run_interpolation = False

        for sensor_key in sensor_object:
            output[sensor_key] = self.compute_coupling_single_sensor(
                sensor_object=sensor_object[sensor_key],
                meteorology=meteorology_object[sensor_key],
                gas_object=gas_object,
                run_interpolation=run_interpolation,
            )
        if output_stacked:
            output = np.concatenate(tuple(output.values()), axis=0)

    elif isinstance(sensor_object, Sensor):
        if isinstance(meteorology_object, MeteorologyGroup):
            raise TypeError("Please provide a single Meteorology object when using a single Sensor object")

        output = self.compute_coupling_single_sensor(
            sensor_object=sensor_object,
            meteorology=meteorology_object,
            gas_object=gas_object,
            run_interpolation=run_interpolation,
        )
    else:
        raise TypeError("Please provide either a Sensor or SensorGroup as input argument")

    return output

compute_coupling_single_sensor(sensor_object, meteorology, gas_object=None, run_interpolation=True)

Wrapper function to compute the gaussian plume coupling for a single sensor.

Wrapper is used to identify specific cases and calculate the Gaussian plume coupling accordingly.

When the sensor object contains the source_on attribute we set all coupling values to 0 for observations for which source_on is False. Making sure the source_on is column array, aligning with the 1st dimension (nof_observations) of the plume coupling array.

Parameters:

Name Type Description Default
sensor_object Sensor

Single sensor object which is used in the calculation of the plume coupling

required
meteorology Meteorology

Meteorology object which is used in the calculation of the plume coupling

required
gas_object GasSpecies

Optionally input a gas species object to correctly calculate the gas density which is used in the conversion of the units of the Gaussian plume coupling

None
run_interpolation bool

logical indicating whether interpolation of the meteorological data to the sensor/source is required. Default passed from compute_coupling.

True

Returns:

Name Type Description
plume_coupling Union[list, ndarray]

List of arrays or single array containing the plume coupling in 1e6*[hr/kg]. Entries of the list are per source in the case of a satellite sensor, if a single array is returned the coupling for each observation (first dimension) to each source (second dimension) is provided.

Source code in src/pyelq/dispersion_model/gaussian_plume.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def compute_coupling_single_sensor(
    self,
    sensor_object: Sensor,
    meteorology: Meteorology,
    gas_object: GasSpecies = None,
    run_interpolation: bool = True,
) -> Union[list, np.ndarray]:
    """Wrapper function to compute the gaussian plume coupling for a single sensor.

    Wrapper is used to identify specific cases and calculate the Gaussian plume coupling accordingly.

    When the sensor object contains the source_on attribute we set all coupling values to 0 for observations for
    which source_on is False. Making sure the source_on is column array, aligning with the 1st dimension
    (nof_observations) of the plume coupling array.

    Args:
        sensor_object (Sensor): Single sensor object which is used in the calculation of the plume coupling
        meteorology (Meteorology): Meteorology object which is used in the calculation of the plume coupling
        gas_object (GasSpecies, optional): Optionally input a gas species object to correctly calculate the
            gas density which is used in the conversion of the units of the Gaussian plume coupling
        run_interpolation (bool): logical indicating whether interpolation of the meteorological data to
            the sensor/source is required. Default passed from compute_coupling.

    Returns:
        plume_coupling (Union[list, np.ndarray]): List of arrays or single array containing the plume coupling
            in 1e6*[hr/kg]. Entries of the list are per source in the case of a satellite sensor, if a single array
            is returned the coupling for each observation (first dimension) to each source (second dimension) is
            provided.

    """
    if not isinstance(sensor_object, Sensor):
        raise NotImplementedError("Please provide a valid sensor type")

    (
        gas_density,
        u_interpolated,
        v_interpolated,
        wind_turbulence_horizontal,
        wind_turbulence_vertical,
    ) = self.interpolate_all_meteorology(
        meteorology=meteorology,
        sensor_object=sensor_object,
        gas_object=gas_object,
        run_interpolation=run_interpolation,
    )

    wind_speed = np.sqrt(u_interpolated**2 + v_interpolated**2)
    theta = np.arctan2(v_interpolated, u_interpolated)

    if isinstance(sensor_object, Satellite):
        plume_coupling = self.compute_coupling_satellite(
            sensor_object=sensor_object,
            wind_speed=wind_speed,
            theta=theta,
            wind_turbulence_horizontal=wind_turbulence_horizontal,
            wind_turbulence_vertical=wind_turbulence_vertical,
            gas_density=gas_density,
        )

    else:
        plume_coupling = self.compute_coupling_ground(
            sensor_object=sensor_object,
            wind_speed=wind_speed,
            theta=theta,
            wind_turbulence_horizontal=wind_turbulence_horizontal,
            wind_turbulence_vertical=wind_turbulence_vertical,
            gas_density=gas_density,
        )

    if sensor_object.source_on is not None:
        plume_coupling = plume_coupling * sensor_object.source_on[:, None]

    return plume_coupling

compute_coupling_array(sensor_x, sensor_y, sensor_z, source_z, wind_speed, theta, wind_turbulence_horizontal, wind_turbulence_vertical, gas_density)

Compute the Gaussian plume coupling.

Most low level function to calculate the Gaussian plume coupling. Assuming input shapes are consistent but no checking is done on this.

Setting sigma_vert to 1e-16 when it is identically zero (distance_x == 0) so we don't get a divide by 0 error all the time.

Parameters:

Name Type Description Default
sensor_x ndarray

sensor x location relative to source [m].

required
sensor_y ndarray

sensor y location relative to source [m].

required
sensor_z ndarray

sensor z location relative to ground height [m].

required
source_z ndarray

source z location relative to ground height [m].

required
wind_speed ndarray

wind speed at source locations in [m/s].

required
theta ndarray

Mathematical wind direction at source locations [radians]: calculated as np.arctan2(v_component_wind, u_component_wind).

required
wind_turbulence_horizontal ndarray

Horizontal wind turbulence [deg].

required
wind_turbulence_vertical ndarray

Vertical wind turbulence [deg].

required
gas_density Union[float, ndarray]

Gas density to use in coupling calculation [kg/m^3].

required

Returns:

Name Type Description
plume_coupling ndarray

Gaussian plume coupling in (1e6)*[hr/kg]: gives concentrations in [ppm] when multiplied by sources in [kg/hr].

Source code in src/pyelq/dispersion_model/gaussian_plume.py
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def compute_coupling_array(
    self,
    sensor_x: np.ndarray,
    sensor_y: np.ndarray,
    sensor_z: np.ndarray,
    source_z: np.ndarray,
    wind_speed: np.ndarray,
    theta: np.ndarray,
    wind_turbulence_horizontal: np.ndarray,
    wind_turbulence_vertical: np.ndarray,
    gas_density: Union[float, np.ndarray],
) -> np.ndarray:
    """Compute the Gaussian plume coupling.

    Most low level function to calculate the Gaussian plume coupling. Assuming input shapes are consistent but no
    checking is done on this.

    Setting sigma_vert to 1e-16 when it is identically zero (distance_x == 0) so we don't get a divide by 0 error
    all the time.

    Args:
        sensor_x (np.ndarray): sensor x location relative to source [m].
        sensor_y (np.ndarray): sensor y location relative to source [m].
        sensor_z (np.ndarray): sensor z location relative to ground height [m].
        source_z (np.ndarray): source z location relative to ground height [m].
        wind_speed (np.ndarray): wind speed at source locations in [m/s].
        theta (np.ndarray): Mathematical wind direction at source locations [radians]:
            calculated as np.arctan2(v_component_wind, u_component_wind).
        wind_turbulence_horizontal (np.ndarray): Horizontal wind turbulence [deg].
        wind_turbulence_vertical (np.ndarray): Vertical wind turbulence [deg].
        gas_density (Union[float, np.ndarray]): Gas density to use in coupling calculation [kg/m^3].

    Returns:
        plume_coupling (np.ndarray): Gaussian plume coupling in (1e6)*[hr/kg]: gives concentrations
            in [ppm] when multiplied by sources in [kg/hr].

    """
    cos_theta = np.cos(theta)
    sin_theta = np.sin(theta)

    distance_x = cos_theta * sensor_x + sin_theta * sensor_y
    if np.all(distance_x < 0):
        return np.zeros_like(distance_x)

    distance_y = -sin_theta * sensor_x + cos_theta * sensor_y

    sigma_hor = np.tan(wind_turbulence_horizontal * (np.pi / 180)) * np.abs(distance_x) + self.source_half_width
    sigma_vert = np.tan(wind_turbulence_vertical * (np.pi / 180)) * np.abs(distance_x)

    sigma_vert[sigma_vert == 0] = 1e-16

    plume_coupling = (
        (1 / (2 * np.pi * wind_speed * sigma_hor * sigma_vert))
        * np.exp(-0.5 * (distance_y / sigma_hor) ** 2)
        * (
            np.exp(-0.5 * (((sensor_z + source_z) / sigma_vert) ** 2))
            + np.exp(-0.5 * (((sensor_z - source_z) / sigma_vert) ** 2))
        )
    )

    plume_coupling = np.divide(np.multiply(plume_coupling, 1e6), (gas_density * 3600))
    plume_coupling[np.logical_or(distance_x < 0, plume_coupling < self.minimum_contribution)] = 0

    return plume_coupling

calculate_gas_density(meteorology, sensor_object, gas_object)

Helper function to calculate the gas density using ideal gas law.

https://en.wikipedia.org/wiki/Ideal_gas

When a gas object is passed as input we calculate the density according to that gas. We check if the meteorology object has a temperature and/or pressure value and use those accordingly. Otherwise, we use Standard Temperature and Pressure (STP).

We interpolate the temperature and pressure values to the source locations/times such that this is consistent with the other calculations, i.e. we only do spatial interpolation when the sensor is a Satellite object and temporal interpolation otherwise.

When no gas_object is passed in we just set the gas density value to 1.

Parameters:

Name Type Description Default
meteorology Meteorology

Meteorology object potentially containing temperature or pressure values

required
sensor_object Sensor

Sensor object containing information about where to interpolate to

required
gas_object Union[GasSpecies, None]

Gas species object which actually calculates the correct density

required

Returns:

Name Type Description
gas_density ndarray

Numpy array of shape [1 x nof_sources] (Satellite sensor) or [nof_observations x 1] (otherwise) containing the gas density values to use

Source code in src/pyelq/dispersion_model/gaussian_plume.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def calculate_gas_density(
    self, meteorology: Meteorology, sensor_object: Sensor, gas_object: Union[GasSpecies, None]
) -> np.ndarray:
    """Helper function to calculate the gas density using ideal gas law.

    https://en.wikipedia.org/wiki/Ideal_gas

    When a gas object is passed as input we calculate the density according to that gas. We check if the
    meteorology object has a temperature and/or pressure value and use those accordingly. Otherwise, we use Standard
    Temperature and Pressure (STP).

    We interpolate the temperature and pressure values to the source locations/times such that this is consistent
    with the other calculations, i.e. we only do spatial interpolation when the sensor is a Satellite object
    and temporal interpolation otherwise.

    When no gas_object is passed in we just set the gas density value to 1.

    Args:
        meteorology (Meteorology): Meteorology object potentially containing temperature or pressure values
        sensor_object (Sensor): Sensor object containing information about where to interpolate to
        gas_object (Union[GasSpecies, None]): Gas species object which actually calculates the correct density

    Returns:
        gas_density (np.ndarray): Numpy array of shape [1 x nof_sources] (Satellite sensor)
            or [nof_observations x 1] (otherwise) containing the gas density values to use

    """
    if not isinstance(gas_object, GasSpecies):
        if isinstance(sensor_object, Satellite):
            return np.ones((1, self.source_map.nof_sources))
        return np.ones((sensor_object.nof_observations, 1))

    temperature_interpolated = self.interpolate_meteorology(
        meteorology=meteorology, variable_name="temperature", sensor_object=sensor_object
    )
    if temperature_interpolated is None:
        temperature_interpolated = np.array([[273.15]])

    pressure_interpolated = self.interpolate_meteorology(
        meteorology=meteorology, variable_name="pressure", sensor_object=sensor_object
    )
    if pressure_interpolated is None:
        pressure_interpolated = np.array([[101.325]])

    gas_density = gas_object.gas_density(temperature=temperature_interpolated, pressure=pressure_interpolated)

    return gas_density

interpolate_all_meteorology(sensor_object, meteorology, gas_object, run_interpolation)

Function which carries out interpolation of all meteorological information.

The flag run_interpolation determines whether the interpolation should be carried out. If this is set to be False, the meteorological parameters are simply set to the values stored on the meteorology object (i.e. we assume that the meteorology has already been interpolated). This functionality is required to avoid wasted computation in the case of e.g. a reversible jump run.

Parameters:

Name Type Description Default
sensor_object Sensor

object containing locations/times onto which met information should be interpolated.

required
meteorology Meteorology

object containing meteorology information for interpolation.

required
gas_object GasSpecies

object containing gas information.

required
run_interpolation bool

logical indicating whether the meteorology information needs to be interpolated.

required

Returns:

Name Type Description
gas_density ndarray

numpy array of shape [n_data x 1] of gas densities.

u_interpolated ndarray

numpy array of shape [n_data x 1] of northerly wind components.

v_interpolated ndarray

numpy array of shape [n_data x 1] of easterly wind components.

wind_turbulence_horizontal ndarray

numpy array of shape [n_data x 1] of horizontal turbulence parameters.

wind_turbulence_vertical ndarray

numpy array of shape [n_data x 1] of vertical turbulence parameters.

Source code in src/pyelq/dispersion_model/gaussian_plume.py
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
def interpolate_all_meteorology(
    self, sensor_object: Sensor, meteorology: Meteorology, gas_object: GasSpecies, run_interpolation: bool
):
    """Function which carries out interpolation of all meteorological information.

    The flag run_interpolation determines whether the interpolation should be carried out. If this
    is set to be False, the meteorological parameters are simply set to the values stored on the
    meteorology object (i.e. we assume that the meteorology has already been interpolated). This
    functionality is required to avoid wasted computation in the case of e.g. a reversible jump run.

    Args:
        sensor_object (Sensor): object containing locations/times onto which met information should
            be interpolated.
        meteorology (Meteorology): object containing meteorology information for interpolation.
        gas_object (GasSpecies): object containing gas information.
        run_interpolation (bool): logical indicating whether the meteorology information needs to be interpolated.

    Returns:
        gas_density (np.ndarray): numpy array of shape [n_data x 1] of gas densities.
        u_interpolated (np.ndarray): numpy array of shape [n_data x 1] of northerly wind components.
        v_interpolated (np.ndarray): numpy array of shape [n_data x 1] of easterly wind components.
        wind_turbulence_horizontal (np.ndarray): numpy array of shape [n_data x 1] of horizontal turbulence
            parameters.
        wind_turbulence_vertical (np.ndarray): numpy array of shape [n_data x 1] of vertical turbulence
            parameters.

    """
    if run_interpolation:
        gas_density = self.calculate_gas_density(
            meteorology=meteorology, sensor_object=sensor_object, gas_object=gas_object
        )
        u_interpolated = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="u_component", sensor_object=sensor_object
        )
        v_interpolated = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="v_component", sensor_object=sensor_object
        )
        wind_turbulence_horizontal = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="wind_turbulence_horizontal", sensor_object=sensor_object
        )
        wind_turbulence_vertical = self.interpolate_meteorology(
            meteorology=meteorology, variable_name="wind_turbulence_vertical", sensor_object=sensor_object
        )
    else:
        gas_density = gas_object.gas_density(temperature=meteorology.temperature, pressure=meteorology.pressure)
        gas_density = gas_density.reshape((gas_density.size, 1))
        u_interpolated = meteorology.u_component.reshape((meteorology.u_component.size, 1))
        v_interpolated = meteorology.v_component.reshape((meteorology.v_component.size, 1))
        wind_turbulence_horizontal = meteorology.wind_turbulence_horizontal.reshape(
            (meteorology.wind_turbulence_horizontal.size, 1)
        )
        wind_turbulence_vertical = meteorology.wind_turbulence_vertical.reshape(
            (meteorology.wind_turbulence_vertical.size, 1)
        )

    return gas_density, u_interpolated, v_interpolated, wind_turbulence_horizontal, wind_turbulence_vertical

interpolate_meteorology(meteorology, variable_name, sensor_object)

Helper function to interpolate meteorology variables.

This function interpolates meteorological variables to times in Sensor or Sources in sourcemap. It also calculates the wind speed and mathematical angle between the u- and v-components which in turn gets used in the calculation of the Gaussian plume.

When the input sensor object is a Satellite type we use spatial interpolation using the interpolation method from the coordinate system class as this takes care of the coordinate systems. When the input sensor object is of another time we use temporal interpolation (assumption is spatial uniformity for all observations over a small(er) area).

Parameters:

Name Type Description Default
meteorology Meteorology

Meteorology object containing u- and v-components of wind including their spatial location

required
variable_name str

String name of an attribute in the meteorology input object which needs to be interpolated

required
sensor_object Sensor

Sensor object containing information about where to interpolate to

required

Returns:

Name Type Description
variable_interpolated ndarray

Interpolated values

Source code in src/pyelq/dispersion_model/gaussian_plume.py
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def interpolate_meteorology(
    self, meteorology: Meteorology, variable_name: str, sensor_object: Sensor
) -> Union[np.ndarray, None]:
    """Helper function to interpolate meteorology variables.

    This function interpolates meteorological variables to times in Sensor or Sources in sourcemap. It also
    calculates the wind speed and mathematical angle between the u- and v-components which in turn gets used in the
    calculation of the Gaussian plume.

    When the input sensor object is a Satellite type we use spatial interpolation using the interpolation method
    from the coordinate system class as this takes care of the coordinate systems.
    When the input sensor object is of another time we use temporal interpolation (assumption is spatial uniformity
    for all observations over a small(er) area).

    Args:
        meteorology (Meteorology): Meteorology object containing u- and v-components of wind including their
            spatial location
        variable_name (str): String name of an attribute in the meteorology input object which needs to be
            interpolated
        sensor_object (Sensor): Sensor object containing information about where to interpolate to

    Returns:
        variable_interpolated (np.ndarray): Interpolated values

    """
    variable = getattr(meteorology, variable_name)
    if variable is None:
        return None

    if isinstance(sensor_object, Satellite):
        variable_interpolated = meteorology.location.interpolate(variable, self.source_map.location)
        variable_interpolated = variable_interpolated.reshape(1, self.source_map.nof_sources)
    else:
        variable_interpolated = sti.interpolate(
            time_in=meteorology.time, values_in=variable, time_out=sensor_object.time
        )
        variable_interpolated = variable_interpolated.reshape(sensor_object.nof_observations, 1)
    return variable_interpolated

compute_coupling_satellite(sensor_object, wind_speed, theta, wind_turbulence_horizontal, wind_turbulence_vertical, gas_density)

Compute Gaussian plume coupling for satellite sensor.

When the sensor is a Satellite object we calculate the plume coupling per source. Given the large number of sources and the possibility of using the inclusion radius and inclusion indices here and validity of a local ENU system over large distances we loop over each source and calculate the coupling on a per-source basis.

If source_map.inclusion_n_obs is None, we do not do any filtering on observations and we want to include all observations in the plume coupling calculations.

All np.ndarray inputs should have a shape of [1 x nof_sources]

Parameters:

Name Type Description Default
sensor_object Sensor

Sensor object used in plume coupling calculation

required
wind_speed ndarray

Wind speed [m/s]

required
theta ndarray

Mathematical angle between the u- and v-components of wind [radians]

required
wind_turbulence_horizontal ndarray

Parameter of the wind stability in horizontal direction [deg]

required
wind_turbulence_vertical ndarray

Parameter of the wind stability in vertical direction [deg]

required
gas_density ndarray

(np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

required

Returns:

Name Type Description
plume_coupling list

List of Gaussian plume coupling 1e6*[hr/kg] arrays. The list has a length of nof_sources, each array has the shape [nof_observations x 1] or [inclusion_n_obs x 1] when inclusion_idx is used.

Source code in src/pyelq/dispersion_model/gaussian_plume.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
def compute_coupling_satellite(
    self,
    sensor_object: Sensor,
    wind_speed: np.ndarray,
    theta: np.ndarray,
    wind_turbulence_horizontal: np.ndarray,
    wind_turbulence_vertical: np.ndarray,
    gas_density: np.ndarray,
) -> list:
    """Compute Gaussian plume coupling for satellite sensor.

    When the sensor is a Satellite object we calculate the plume coupling per source. Given the large number of
    sources and the possibility of using the inclusion radius and inclusion indices here and validity of a local
    ENU system over large distances we loop over each source and calculate the coupling on a per-source basis.

    If source_map.inclusion_n_obs is None, we do not do any filtering on observations and we want to include all
    observations in the plume coupling calculations.

    All np.ndarray inputs should have a shape of [1 x nof_sources]

    Args:
        sensor_object (Sensor): Sensor object used in plume coupling calculation
        wind_speed (np.ndarray): Wind speed [m/s]
        theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
        wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
        wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
        gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

    Returns:
        plume_coupling (list): List of Gaussian plume coupling 1e6*[hr/kg] arrays. The list has a length of
            nof_sources, each array has the shape [nof_observations x 1] or [inclusion_n_obs x 1] when
            inclusion_idx is used.

    """
    plume_coupling = []

    source_map_location_lla = self.source_map.location.to_lla()
    for current_source in range(self.source_map.nof_sources):
        if self.source_map.inclusion_n_obs is None:
            enu_sensor_array = sensor_object.location.to_enu(
                ref_latitude=source_map_location_lla.latitude[current_source],
                ref_longitude=source_map_location_lla.longitude[current_source],
                ref_altitude=0,
            ).to_array()

        else:
            if self.source_map.inclusion_n_obs[current_source] == 0:
                plume_coupling.append(np.array([]))
                continue

            enu_sensor_array = _create_enu_sensor_array(
                inclusion_idx=self.source_map.inclusion_idx[current_source],
                sensor_object=sensor_object,
                source_map_location_lla=source_map_location_lla,
                current_source=current_source,
            )

        temp_coupling = self.compute_coupling_array(
            enu_sensor_array[:, [0]],
            enu_sensor_array[:, [1]],
            enu_sensor_array[:, [2]],
            source_map_location_lla.altitude[current_source],
            wind_speed[:, current_source],
            theta[:, current_source],
            wind_turbulence_horizontal[:, current_source],
            wind_turbulence_vertical[:, current_source],
            gas_density[:, current_source],
        )

        plume_coupling.append(temp_coupling)

    return plume_coupling

compute_coupling_ground(sensor_object, wind_speed, theta, wind_turbulence_horizontal, wind_turbulence_vertical, gas_density)

Compute Gaussian plume coupling for a ground sensor.

If the source map is already defined as ENU the reference location is maintained but the sensor is checked to make sure the same reference location is used. Otherwise, when converting to ENU object for the sensor observations we use a single source and altitude 0 as the reference location. This way our ENU system is a system w.r.t. ground level which is required for the current implementation of the actual coupling calculation.

When the sensor is a Beam object we calculate the plume coupling for all sources to all beam knot locations at once in the same ENU coordinate system and finally averaged over the beam knots to get the final output.

In general, we calculate the coupling from all sources to all sensor observation locations. In order to achieve this we input the sensor array as column and source array as row vector in calculating relative x etc., with the beam knot locations being the third dimension. When the sensor is a single point Sensor or a Drone sensor we effectively have one beam knot, making the mean operation at the end effectively a reshape operation which gets rid of the third dimension.

All np.ndarray inputs should have a shape of [nof_observations x 1]

Parameters:

Name Type Description Default
sensor_object Sensor

Sensor object used in plume coupling calculation

required
wind_speed ndarray

Wind speed [m/s]

required
theta ndarray

Mathematical angle between the u- and v-components of wind [radians]

required
wind_turbulence_horizontal ndarray

Parameter of the wind stability in horizontal direction [deg]

required
wind_turbulence_vertical ndarray

Parameter of the wind stability in vertical direction [deg]

required
gas_density ndarray

(np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

required

Returns:

Name Type Description
plume_coupling ndarray

Gaussian plume coupling 1e6*[hr/kg] array. The array has the shape [nof_observations x nof_sources]

Source code in src/pyelq/dispersion_model/gaussian_plume.py
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
def compute_coupling_ground(
    self,
    sensor_object: Sensor,
    wind_speed: np.ndarray,
    theta: np.ndarray,
    wind_turbulence_horizontal: np.ndarray,
    wind_turbulence_vertical: np.ndarray,
    gas_density: np.ndarray,
) -> np.ndarray:
    """Compute Gaussian plume coupling for a ground sensor.

    If the source map is already defined as ENU the reference location is maintained but the sensor is checked
    to make sure the same reference location is used. Otherwise, when converting to ENU object for the sensor
    observations we use a single source and altitude 0 as the reference location. This way our ENU system is a
    system w.r.t. ground level which is required for the current implementation of the actual coupling calculation.

    When the sensor is a Beam object we calculate the plume coupling for all sources to all beam knot locations at
    once in the same ENU coordinate system and finally averaged over the beam knots to get the final output.

    In general, we calculate the coupling from all sources to all sensor observation locations. In order to achieve
    this we input the sensor array as column and source array as row vector in calculating relative x etc.,
    with the beam knot locations being the third dimension. When the sensor is a single point Sensor or a Drone
    sensor we effectively have one beam knot, making the mean operation at the end effectively a reshape operation
    which gets rid of the third dimension.

    All np.ndarray inputs should have a shape of [nof_observations x 1]

    Args:
        sensor_object (Sensor): Sensor object used in plume coupling calculation
        wind_speed (np.ndarray): Wind speed [m/s]
        theta (np.ndarray): Mathematical angle between the u- and v-components of wind [radians]
        wind_turbulence_horizontal (np.ndarray): Parameter of the wind stability in horizontal direction [deg]
        wind_turbulence_vertical (np.ndarray): Parameter of the wind stability in vertical direction [deg]
        gas_density: (np.ndarray): Numpy array containing the gas density values to use [kg/m^3]

    Returns:
        plume_coupling (np.ndarray): Gaussian plume coupling 1e6*[hr/kg] array. The array has the
            shape [nof_observations x nof_sources]

    """
    if not isinstance(self.source_map.location, ENU):
        source_map_lla = self.source_map.location.to_lla()
        source_map_enu = source_map_lla.to_enu(
            ref_latitude=source_map_lla.latitude[0], ref_longitude=source_map_lla.longitude[0], ref_altitude=0
        )
    else:
        source_map_enu = self.source_map.location

    enu_source_array = source_map_enu.to_array()

    if isinstance(sensor_object, Beam):
        enu_sensor_array = sensor_object.make_beam_knots(
            ref_latitude=source_map_enu.ref_latitude,
            ref_longitude=source_map_enu.ref_longitude,
            ref_altitude=source_map_enu.ref_altitude,
        )
        relative_x = np.subtract(enu_sensor_array[:, 0][None, None, :], enu_source_array[:, 0][None, :, None])
        relative_y = np.subtract(enu_sensor_array[:, 1][None, None, :], enu_source_array[:, 1][None, :, None])
        z_sensor = enu_sensor_array[:, 2][None, None, :]
    else:
        enu_sensor_array = sensor_object.location.to_enu(
            ref_latitude=source_map_enu.ref_latitude,
            ref_longitude=source_map_enu.ref_longitude,
            ref_altitude=source_map_enu.ref_altitude,
        ).to_array()
        relative_x = np.subtract(enu_sensor_array[:, 0][:, None, None], enu_source_array[:, 0][None, :, None])
        relative_y = np.subtract(enu_sensor_array[:, 1][:, None, None], enu_source_array[:, 1][None, :, None])
        z_sensor = enu_sensor_array[:, 2][:, None, None]

    z_source = enu_source_array[:, 2][None, :, None]

    plume_coupling = self.compute_coupling_array(
        relative_x,
        relative_y,
        z_sensor,
        z_source,
        wind_speed[:, :, None],
        theta[:, :, None],
        wind_turbulence_horizontal[:, :, None],
        wind_turbulence_vertical[:, :, None],
        gas_density[:, :, None],
    )

    plume_coupling = plume_coupling.mean(axis=2)

    return plume_coupling

compute_coverage(couplings, threshold_function, coverage_threshold=6, **kwargs) staticmethod

Returns a logical vector that indicates which sources in the couplings are, or are not, within the coverage.

The 'coverage' is the area inside which all sources are well covered by wind data. E.g. If wind exclusively blows towards East, then all sources to the East of any sensor are 'invisible', and are not within the coverage.

Couplings are returned in hr/kg. Some threshold function defines the largest allowed coupling value. This is used to calculate estimated emission rates in kg/hr. Any emissions which are greater than the value of 'coverage_threshold' are defined as not within the coverage.

Parameters:

Name Type Description Default
couplings ndarray

Array of coupling values. Dimensions: n_datapoints x n_sources.

required
threshold_function Callable

Callable function which returns some single value that defines the maximum or 'threshold' coupling. For example: np.quantile(., q=0.95)

required
coverage_threshold float

The threshold value of the estimated emission rate which is considered to be within the coverage. Defaults to 6 kg/hr.

6
kwargs dict

Keyword arguments required for the threshold function.

{}

Returns:

Name Type Description
coverage Union[ndarray, dict]

A logical array specifying which sources are within the coverage.

Source code in src/pyelq/dispersion_model/gaussian_plume.py
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
@staticmethod
def compute_coverage(
    couplings: np.ndarray, threshold_function: Callable, coverage_threshold: float = 6, **kwargs
) -> Union[np.ndarray, dict]:
    """Returns a logical vector that indicates which sources in the couplings are, or are not, within the coverage.

    The 'coverage' is the area inside which all sources are well covered by wind data. E.g. If wind exclusively
    blows towards East, then all sources to the East of any sensor are 'invisible', and are not within the coverage.

    Couplings are returned in hr/kg. Some threshold function defines the largest allowed coupling value. This is
    used to calculate estimated emission rates in kg/hr. Any emissions which are greater than the value of
    'coverage_threshold' are defined as not within the coverage.

    Args:
        couplings (np.ndarray): Array of coupling values. Dimensions: n_datapoints x n_sources.
        threshold_function (Callable): Callable function which returns some single value that defines the
            maximum or 'threshold' coupling. For example: np.quantile(., q=0.95)
        coverage_threshold (float, optional): The threshold value of the estimated emission rate which is
            considered to be within the coverage. Defaults to 6 kg/hr.
        kwargs (dict, optional): Keyword arguments required for the threshold function.

    Returns:
        coverage (Union[np.ndarray, dict]): A logical array specifying which sources are within the coverage.

    """
    coupling_threshold = threshold_function(couplings, **kwargs)
    no_warning_threshold = np.where(coupling_threshold <= 1e-100, 1, coupling_threshold)
    no_warning_estimated_emission_rates = np.where(coupling_threshold <= 1e-100, np.inf, 1 / no_warning_threshold)
    coverage = no_warning_estimated_emission_rates < coverage_threshold

    return coverage