Skip to content

Plot

Plot module.

Large module containing all the plotting code used to create various plots. Contains helper functions and the Plot class definition.

Plot dataclass

Defines the plot class.

Can be used to generate various figures from model components while storing general settings to get consistent figure appearance.

Attributes:

Name Type Description
figure_dict dict

Figure dictionary, used as storage using keys to identify the different figures.

mapbox_token str

Optional mapbox token, used for plotting mapbox backgrounds.

layout dict

Layout template for plotly figures, used in all figures generated using this class instance.

Source code in src/pyelq/plotting/plot.py
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
@dataclass
class Plot:
    """Defines the plot class.

    Can be used to generate various figures from model components while storing general settings to get consistent
    figure appearance.

    Attributes:
        figure_dict (dict): Figure dictionary, used as storage using keys to identify the different figures.
        mapbox_token (str, optional): Optional mapbox token, used for plotting mapbox backgrounds.
        layout (dict, optional): Layout template for plotly figures, used in all figures generated using this class
            instance.

    """

    figure_dict: dict = field(default_factory=dict)
    mapbox_token: str = "empty"
    layout: dict = field(default_factory=dict)

    def __post_init__(self):
        """Using post init to set the default layout, not able to do this in attribute definition/initialization."""
        self.layout = {
            "layout": go.Layout(
                font={"family": "Futura", "size": 20},
                title={"x": 0.5},
                title_font={"size": 30},
                xaxis={"ticks": "outside", "showline": True, "linewidth": 2},
                yaxis={"ticks": "outside", "showline": True, "linewidth": 2},
                legend={
                    "orientation": "v",
                    "yanchor": "middle",
                    "y": 0.5,
                    "xanchor": "right",
                    "x": 1.2,
                    "font": {"size": 14, "color": "black"},
                },
            )
        }

    def show_all(self, renderer="browser"):
        """Show all the figures which are in the figure dictionary.

        Args:
            renderer (str, optional): Default renderer to use when showing the figures.

        """
        for fig in self.figure_dict.values():
            fig.show(renderer=renderer)

    def plot_single_trace(self, object_to_plot: Union[Type[SlabAndSpike], SourceModel, MCMC], **kwargs: Any):
        """Plotting a trace of a single variable.

        Depending on the object to plot it creates a figure which is stored in the figure_dict attribute.
        First it grabs all the specifics needed for the plot and then plots the trace.

        Args:
            object_to_plot (Union[Type[SlabAndSpike], SourceModel, MCMC]): The object from which to plot a variable
            **kwargs (Any): Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in
                some specific plots but not applicable to all.

        """
        plot_specifics = create_trace_specifics(object_to_plot=object_to_plot, **kwargs)

        burn_in = kwargs.pop("burn_in", 0)

        fig = go.Figure()
        fig = plot_single_scatter(
            fig=fig,
            x_values=plot_specifics["x_values"],
            y_values=plot_specifics["y_values"],
            color=plot_specifics["color"],
            name=plot_specifics["name"],
            burn_in=burn_in,
        )

        if burn_in > 0:
            fig.add_vline(
                x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
            )
        if isinstance(object_to_plot, SlabAndSpike) and isinstance(object_to_plot, SourceModel):
            prior_num_sources_on = round(object_to_plot.emission_rate.shape[0] * object_to_plot.slab_probability, 2)

            fig.add_hline(
                y=prior_num_sources_on,
                line_width=3,
                line_dash="dash",
                line_color="black",
                annotation_text=f"Prior sources 'on': {prior_num_sources_on}",
            )

        if self.layout is not None:
            fig.update_layout(template=self.layout)

        fig.update_layout(title=plot_specifics["title_text"])
        fig.update_xaxes(title_standoff=20, automargin=True, title_text=plot_specifics["x_label"])
        fig.update_yaxes(title_standoff=20, automargin=True, title_text=plot_specifics["y_label"])

        self.figure_dict[plot_specifics["dict_key"]] = fig

    def plot_trace_per_sensor(
        self,
        object_to_plot: Union[ErrorModel, PerSensor, MCMC],
        sensor_object: Union[SensorGroup, Sensor],
        plot_type: str,
        **kwargs: Any,
    ):
        """Plotting a trace of a single variable per sensor.

        Depending on the object to plot it creates a figure which is stored in the figure_dict attribute.
        First it grabs all the specifics needed for the plot and then plots the trace per sensor.

        Args:
            object_to_plot (Union[ErrorModel, PerSensor, MCMC]): The object which to plot a variable from
            sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the object_to_plot
            plot_type (str): String specifying a line or box plot.
            **kwargs (Any): Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in
                some specific plots but not applicable to all.

        """
        if isinstance(sensor_object, Sensor):
            temp = SensorGroup()
            temp.add_sensor(sensor_object)
            sensor_object = deepcopy(temp)
        plot_specifics = create_plot_specifics(
            object_to_plot=object_to_plot, sensor_object=sensor_object, plot_type=plot_type, **kwargs
        )
        burn_in = kwargs.pop("burn_in", 0)

        fig = go.Figure()
        for sensor_idx, sensor_key in enumerate(sensor_object.keys()):
            color_idx = sensor_idx % len(sensor_object.color_map)
            color = sensor_object.color_map[color_idx]

            if plot_specifics["plot_type"] == "line":
                fig = plot_single_scatter(
                    fig=fig,
                    x_values=plot_specifics["x_values"],
                    y_values=plot_specifics["y_values"][sensor_idx, :],
                    color=color,
                    name=sensor_key,
                    burn_in=burn_in,
                )
            elif plot_specifics["plot_type"] == "box":
                fig = plot_single_box(
                    fig=fig,
                    y_values=plot_specifics["y_values"][sensor_idx, burn_in:].flatten(),
                    color=color,
                    name=sensor_key,
                )

        if burn_in > 0 and plot_specifics["plot_type"] == "line":
            fig.add_vline(
                x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
            )

        if self.layout is not None:
            fig.update_layout(template=self.layout)

        fig.update_layout(title=plot_specifics["title_text"])
        fig.update_xaxes(title_standoff=20, automargin=True, title_text=plot_specifics["x_label"])
        fig.update_yaxes(title_standoff=20, automargin=True, title_text=plot_specifics["y_label"])

        self.figure_dict[plot_specifics["dict_key"]] = fig

    def plot_fitted_values_per_sensor(
        self,
        mcmc_object: MCMC,
        sensor_object: Union[SensorGroup, Sensor],
        background_model: TemporalBackground = None,
        burn_in: int = 0,
    ):
        """Plot the fitted values from the mcmc object against time, also shows the estimated background when inputted.

        Based on the inputs it plots the results of the mcmc analysis, being the fitted values of the concentration
        measurements together with the 10th and 90th quantile lines to show the goodness of fit of the estimates.

        The created figure is stored in the figure_dict attribute.

        Args:
            mcmc_object (MCMC): MCMC object which contains the fitted values in the store attribute of the object.
            sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the object_to_plot
            background_model (TemporalBackground, optional): Background model containing the estimated background.
            burn_in (int, optional): Number of burn-in iterations to discard before calculating the quantiles
                and median. Defaults to 0.

        """
        if "y" not in mcmc_object.store:
            raise ValueError("Missing fitted values ('y') in mcmc_store_object")

        if isinstance(sensor_object, Sensor):
            temp = SensorGroup()
            temp.add_sensor(sensor_object)
            sensor_object = deepcopy(temp)

        y_values_overall = mcmc_object.store["y"]
        dict_key = "fitted_values"
        title_text = "Observations and Predicted Model Values Against Time"
        x_label = "Time"
        y_label = "Concentration (ppm)"
        fig = go.Figure()

        for sensor_idx, sensor_key in enumerate(sensor_object.keys()):
            plot_idx = np.array(sensor_object.sensor_index == sensor_idx)

            x_values = sensor_object[sensor_key].time
            y_values = y_values_overall[plot_idx, burn_in:]

            color_idx = sensor_idx % len(sensor_object.color_map)
            color = sensor_object.color_map[color_idx]

            fig = plot_quantiles_from_array(
                fig=fig, x_values=x_values, y_values=y_values, quantiles=[10, 90], color=color, name=sensor_key
            )

        if isinstance(background_model, TemporalBackground):
            fig = plot_quantiles_from_array(
                fig=fig,
                x_values=background_model.time,
                y_values=background_model.bg,
                quantiles=[10, 90],
                color="rgb(186, 186, 186)",
                name="Background",
            )

            fig.for_each_trace(
                lambda trace: (
                    trace.update(showlegend=True, name="Background") if trace.name == "Median for Background" else ()
                ),
            )

        fig = sensor_object.plot_timeseries(fig=fig, color_map=sensor_object.color_map, mode="markers")

        fig.add_annotation(
            x=1,
            y=1.1,
            yref="paper",
            xref="paper",
            xanchor="left",
            yanchor="top",
            font={"size": 12, "color": "#000000"},
            align="left",
            showarrow=False,
            borderwidth=2,
            borderpad=10,
            bgcolor="#ffffff",
            bordercolor="#000000",
            opacity=0.8,
            text=(
                "<b>Point</b>: Real observation<br><b>Line</b>: Predicted Value<br><b>Shading</b>: " + "Quantiles 10-90"
            ),
        )

        if self.layout is not None:
            fig.update_layout(template=self.layout)

        fig.update_layout(title=title_text)
        fig.update_xaxes(title_standoff=20, automargin=True, title_text=x_label)
        fig.update_yaxes(title_standoff=20, automargin=True, title_text=y_label)

        self.figure_dict[dict_key] = fig

    def plot_emission_rate_estimates(self, source_model_object, y_axis_type="linear", **kwargs: Any):
        """Plot the emission rate estimates source model object against MCMC iteration.

        Based on the inputs it plots the results of the mcmc analysis, being the estimated emission rate values for
        each source location together with the total emissions estimate, which is the sum over all source locations.

        The created figure is stored in the figure_dict attribute.

        After the loop over all sources we add an empty trace to have the legend entry and desired legend group
        behaviour.

        Args:
            source_model_object (SourceModel): Source model object which contains the estimated emission rate estimates.
            y_axis_type (str, optional): String to indicate whether the y-axis should be linear of log scale.
            **kwargs (Any): Additional key word arguments, e.g. burn_in, dict_key, used in some specific plots but not
                applicable to all.

        """
        total_emissions = np.nansum(source_model_object.emission_rate, axis=0)
        x_values = np.array(range(total_emissions.size))

        burn_in = kwargs.pop("burn_in", 0)

        dict_key = "estimated_values_plot"
        title_text = "Estimated Values of Sources With Respect to MCMC Iterations"
        x_label = "MCMC Iteration Number"
        y_label = "Estimated Emission<br>Values (kg/hr)"

        fig = go.Figure()

        fig = plot_single_scatter(
            fig=fig,
            x_values=x_values,
            y_values=total_emissions,
            color="rgb(239, 85, 59)",
            name="Total Site Emissions",
            burn_in=burn_in,
            show_legend=True,
        )

        for source_idx in range(source_model_object.emission_rate.shape[0]):
            y_values = source_model_object.emission_rate[source_idx, :]

            fig = plot_single_scatter(
                fig=fig,
                x_values=x_values,
                y_values=y_values,
                color="rgb(102, 197, 204)",
                name=f"Source {source_idx}",
                burn_in=burn_in,
                show_legend=False,
                legend_group="Source traces",
            )

        fig = plot_single_scatter(
            fig=fig,
            x_values=np.array([None]),
            y_values=np.array([None]),
            color="rgb(102, 197, 204)",
            name="Source traces",
            burn_in=0,
            show_legend=True,
        )

        if burn_in > 0:
            fig.add_vline(
                x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
            )

        if self.layout is not None:
            fig.update_layout(template=self.layout)

        fig.add_annotation(
            x=1.05,
            y=1.05,
            yref="paper",
            xref="paper",
            xanchor="left",
            yanchor="top",
            align="left",
            font={"size": 12, "color": "#000000"},
            showarrow=False,
            borderwidth=2,
            borderpad=10,
            bgcolor="#ffffff",
            bordercolor="#000000",
            opacity=0.8,
            text=(
                "<b>Total Site Emissions</b> are<br>the sum of all estimated<br>"
                "emission rates at a given<br>iteration number."
            ),
        )

        fig.update_layout(title=title_text)
        fig.update_xaxes(title_standoff=20, automargin=True, title_text=x_label)
        fig.update_yaxes(title_standoff=20, automargin=True, title_text=y_label)
        if y_axis_type == "log":
            fig.update_yaxes(type="log")
            dict_key = "log_estimated_values_plot"
        elif y_axis_type != "linear":
            raise ValueError(f"Only linear or log y axis type is allowed, {y_axis_type} was currently specified.")

        self.figure_dict[dict_key] = fig

    def create_empty_mapbox_figure(self, dict_key: str = "map_plot") -> None:
        """Creating an empty mapbox figure to use when you want to add additional traces on a map.

        Args:
            dict_key (str, optional): String key for figure dictionary

        """
        self.figure_dict[dict_key] = go.Figure(
            data=go.Scattermapbox(),
            layout={
                "mapbox_style": "carto-positron",
                "mapbox_center_lat": 0,
                "mapbox_center_lon": 0,
                "mapbox_zoom": 0,
                "mapbox_accesstoken": self.mapbox_token,
            },
        )

    def plot_values_on_map(
        self, dict_key: str, coordinates: LLA, values: np.ndarray, aggregate_function: Callable = np.sum, **kwargs: Any
    ):
        """Plot values on a map based on coordinates.

        Args:
            dict_key (str): Sting key to use in the figure dictionary
            coordinates (LLA): LLA coordinates to use in plotting the values on the map
            values (np.ndarray): Numpy array of values consistent with coordinates to plot on the map
            aggregate_function (Callable, optional): Function which to apply on the data in each hexagonal bin to
                aggregate the data and visualise the result.
            **kwargs (Any): Additional keyword arguments for plotting behaviour (opacity, map_color_scale, num_hexagons,
                show_positions)

        """
        map_color_scale = kwargs.pop("map_color_scale", "YlOrRd")
        num_hexagons = kwargs.pop("num_hexagons", None)
        opacity = kwargs.pop("opacity", 0.8)
        show_positions = kwargs.pop("show_positions", False)

        latitude_check, _ = is_regularly_spaced(coordinates.latitude)
        longitude_check, _ = is_regularly_spaced(coordinates.longitude)
        if latitude_check and longitude_check:
            self.create_empty_mapbox_figure(dict_key=dict_key)
            trace = plot_regular_grid(
                coordinates=coordinates,
                values=values,
                opacity=opacity,
                map_color_scale=map_color_scale,
                tolerance=1e-7,
                unit="",
            )
            self.figure_dict[dict_key].add_trace(trace)
        else:
            fig = plot_hexagonal_grid(
                coordinates=coordinates,
                values=values,
                opacity=opacity,
                map_color_scale=map_color_scale,
                num_hexagons=num_hexagons,
                show_positions=show_positions,
                aggregate_function=aggregate_function,
            )
            fig.update_layout(mapbox_accesstoken=self.mapbox_token, mapbox_style="carto-positron")
            self.figure_dict[dict_key] = fig

        center_longitude = np.mean(coordinates.longitude)
        center_latitude = np.mean(coordinates.latitude)
        self.figure_dict[dict_key].update_layout(
            mapbox={"zoom": 10, "center": {"lon": center_longitude, "lat": center_latitude}}
        )

        if self.layout is not None:
            self.figure_dict[dict_key].update_layout(template=self.layout)

    def plot_quantification_results_on_map(
        self,
        model_object: "ELQModel",
        bin_size_x: float = 1,
        bin_size_y: float = 1,
        normalized_count_limit: float = 0.005,
        burn_in: int = 0,
        show_summary_results: bool = True,
    ):
        """Function to create a map with the quantification results of the model object.

        This function takes the ELQModel object and calculates the statistics for the quantification results. It then
        populates the figure dictionary with three different maps showing the normalized count, median emission rate
        and the inter-quartile range of the emission rate estimates.

        Args:
            model_object (ELQModel): ELQModel object containing the quantification results
            bin_size_x (float, optional): Size of the bins in the x-direction. Defaults to 1.
            bin_size_y (float, optional): Size of the bins in the y-direction. Defaults to 1.
            normalized_count_limit (float, optional): Limit for the normalized count to show on the map.
                Defaults to 0.005.
            burn_in (int, optional): Number of burn-in iterations to discard before calculating the statistics.
                Defaults to 0.
            show_summary_results (bool, optional): Flag to show the summary results on the map. Defaults to True.

        """
        ref_latitude = model_object.components["source"].dispersion_model.source_map.location.ref_latitude
        ref_longitude = model_object.components["source"].dispersion_model.source_map.location.ref_longitude
        ref_altitude = model_object.components["source"].dispersion_model.source_map.location.ref_altitude

        datetime_min_string = model_object.sensor_object.time.min().strftime("%d-%b-%Y, %H:%M:%S")
        datetime_max_string = model_object.sensor_object.time.max().strftime("%d-%b-%Y, %H:%M:%S")

        result_weighted, _, normalized_count, count_boolean, enu_points, summary_result = (
            calculate_rectangular_statistics(
                model_object=model_object,
                bin_size_x=bin_size_x,
                bin_size_y=bin_size_y,
                burn_in=burn_in,
                normalized_count_limit=normalized_count_limit,
            )
        )

        polygons = create_lla_polygons_from_xy_points(
            points_array=enu_points,
            ref_latitude=ref_latitude,
            ref_longitude=ref_longitude,
            ref_altitude=ref_altitude,
            boolean_mask=count_boolean,
        )

        if show_summary_results:
            summary_trace = self.create_summary_trace(summary_result=summary_result)

        self.create_empty_mapbox_figure(dict_key="count_map")
        trace = plot_polygons_on_map(
            polygons=polygons,
            values=normalized_count[count_boolean].flatten(),
            opacity=0.8,
            name="normalized_count",
            colorbar={"title": "Normalized Count", "orientation": "h"},
            map_color_scale="Bluered",
        )
        self.figure_dict["count_map"].add_trace(trace)
        self.figure_dict["count_map"].update_layout(
            mapbox_accesstoken=self.mapbox_token,
            mapbox_style="carto-positron",
            mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
            title=f"Source location probability "
            f"(>={normalized_count_limit}) for "
            f"{datetime_min_string} to {datetime_max_string}",
            font_family="Futura",
            font_size=15,
        )
        model_object.sensor_object.plot_sensor_location(self.figure_dict["count_map"])
        self.figure_dict["count_map"].update_traces(showlegend=False)

        adjusted_result_weights = result_weighted.copy()
        adjusted_result_weights[adjusted_result_weights == 0] = np.nan

        median_of_all_emissions = np.nanmedian(adjusted_result_weights, axis=2)

        self.create_empty_mapbox_figure(dict_key="median_map")

        trace = plot_polygons_on_map(
            polygons=polygons,
            values=median_of_all_emissions[count_boolean].flatten(),
            opacity=0.8,
            name="median_emission",
            colorbar={"title": "Median Emission", "orientation": "h"},
            map_color_scale="Bluered",
        )
        self.figure_dict["median_map"].add_trace(trace)
        self.figure_dict["median_map"].update_layout(
            mapbox_accesstoken=self.mapbox_token,
            mapbox_style="carto-positron",
            mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
            title=f"Median emission rate estimate for {datetime_min_string} to {datetime_max_string}",
            font_family="Futura",
            font_size=15,
        )
        model_object.sensor_object.plot_sensor_location(self.figure_dict["median_map"])
        self.figure_dict["median_map"].update_traces(showlegend=False)

        iqr_of_all_emissions = np.nanquantile(a=adjusted_result_weights, q=0.75, axis=2) - np.nanquantile(
            a=adjusted_result_weights, q=0.25, axis=2
        )
        self.create_empty_mapbox_figure(dict_key="iqr_map")

        trace = plot_polygons_on_map(
            polygons=polygons,
            values=iqr_of_all_emissions[count_boolean].flatten(),
            opacity=0.8,
            name="iqr_emission",
            colorbar={"title": "IQR", "orientation": "h"},
            map_color_scale="Bluered",
        )
        self.figure_dict["iqr_map"].add_trace(trace)
        self.figure_dict["iqr_map"].update_layout(
            mapbox_accesstoken=self.mapbox_token,
            mapbox_style="carto-positron",
            mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
            title=f"Inter Quartile range (25%-75%) of emission rate "
            f"estimate for {datetime_min_string} to {datetime_max_string}",
            font_family="Futura",
            font_size=15,
        )
        model_object.sensor_object.plot_sensor_location(self.figure_dict["iqr_map"])
        self.figure_dict["iqr_map"].update_traces(showlegend=False)

        if show_summary_results:
            self.figure_dict["count_map"].add_trace(summary_trace)
            self.figure_dict["count_map"].update_traces(showlegend=True)
            self.figure_dict["median_map"].add_trace(summary_trace)
            self.figure_dict["median_map"].update_traces(showlegend=True)
            self.figure_dict["iqr_map"].add_trace(summary_trace)
            self.figure_dict["iqr_map"].update_traces(showlegend=True)

    def plot_coverage(
        self,
        coordinates: LLA,
        couplings: np.ndarray,
        threshold_function: Callable = np.max,
        coverage_threshold: float = 6,
        opacity: float = 0.8,
        map_color_scale="jet",
    ):
        """Creates a coverage plot using the coverage function from Gaussian Plume.

        Args:
            coordinates (LLA object): A LLA coordinate object containing a set of locations.
            couplings (np.array): The calculated values of coupling (The 'A matrix') for a set of wind data.
            threshold_function (Callable, optional): Callable function which returns some single value that defines the
                                         maximum or 'threshold' coupling. Examples: np.quantile(q=0.9),
                                         np.max, np.mean. Defaults to np.max.
            coverage_threshold (float, optional): The threshold value of the estimated emission rate which is
                                                  considered to be within the coverage. Defaults to 6 kg/hr.
            opacity (float): The opacity of the grid cells when they are plotted.
            map_color_scale (str): The string which defines which plotly colour scale should be used when plotting
                                   the values.

        """
        coverage_values = GaussianPlume(source_map=None).compute_coverage(
            couplings=couplings, threshold_function=threshold_function, coverage_threshold=coverage_threshold
        )
        self.plot_values_on_map(
            dict_key="coverage_map",
            coordinates=coordinates,
            values=coverage_values,
            aggregate_function=np.max,
            opacity=opacity,
            map_color_scale=map_color_scale,
        )

    @staticmethod
    def create_summary_trace(
        summary_result: pd.DataFrame,
    ) -> go.Scattermapbox:
        """Helper function to create the summary information to plot on top of map type plots.

        We use the summary result calculated through the support functions module to create a trace which contains
        the summary information for each source location.

        Args:
            summary_result (pd.DataFrame): DataFrame containing the summary information for each source location.

        Returns:
            summary_trace (go.Scattermapbox): Trace with summary information to plot on top of map type plots.

        """
        summary_text_values = [
            f"<b>Source ID</b>: {value}<br>"
            f"<b>(Lon, Lat, Alt)</b> ([deg], [deg], [m]):<br>"
            f"({summary_result.longitude[value]:.7f}, "
            f"{summary_result.latitude[value]:.7f}, {summary_result.altitude[value]:.3f})<br>"
            f"<b>Height</b>: {summary_result.height[value]:.3f} [m]<br>"
            f"<b>Median emission rate</b>: {summary_result.median_estimate[value]:.4f} [kg/hr]<br>"
            f"<b>2.5% quantile</b>: {summary_result.quantile_025[value]:.3f} [kg/hr]<br>"
            f"<b>97.5% quantile</b>: {summary_result.quantile_975[value]:.3f} [kg/hr]<br>"
            f"<b>IQR</b>: {summary_result.iqr_estimate[value]:.4f} [kg/hr]<br>"
            f"<b>Blob present during</b>: "
            f"{summary_result.absolute_count_iterations[value]:.0f} iterations<br>"
            f"<b>Blob likelihood</b>: {summary_result.blob_likelihood[value]:.5f}<br>"
            for value in summary_result.index
        ]

        summary_trace = go.Scattermapbox(
            lat=summary_result.latitude,
            lon=summary_result.longitude,
            mode="markers",
            marker=go.scattermapbox.Marker(size=14, color="black"),
            text=summary_text_values,
            name="Summary",
            hoverinfo="text",
        )

        return summary_trace

__post_init__()

Using post init to set the default layout, not able to do this in attribute definition/initialization.

Source code in src/pyelq/plotting/plot.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
def __post_init__(self):
    """Using post init to set the default layout, not able to do this in attribute definition/initialization."""
    self.layout = {
        "layout": go.Layout(
            font={"family": "Futura", "size": 20},
            title={"x": 0.5},
            title_font={"size": 30},
            xaxis={"ticks": "outside", "showline": True, "linewidth": 2},
            yaxis={"ticks": "outside", "showline": True, "linewidth": 2},
            legend={
                "orientation": "v",
                "yanchor": "middle",
                "y": 0.5,
                "xanchor": "right",
                "x": 1.2,
                "font": {"size": 14, "color": "black"},
            },
        )
    }

show_all(renderer='browser')

Show all the figures which are in the figure dictionary.

Parameters:

Name Type Description Default
renderer str

Default renderer to use when showing the figures.

'browser'
Source code in src/pyelq/plotting/plot.py
574
575
576
577
578
579
580
581
582
def show_all(self, renderer="browser"):
    """Show all the figures which are in the figure dictionary.

    Args:
        renderer (str, optional): Default renderer to use when showing the figures.

    """
    for fig in self.figure_dict.values():
        fig.show(renderer=renderer)

plot_single_trace(object_to_plot, **kwargs)

Plotting a trace of a single variable.

Depending on the object to plot it creates a figure which is stored in the figure_dict attribute. First it grabs all the specifics needed for the plot and then plots the trace.

Parameters:

Name Type Description Default
object_to_plot Union[Type[SlabAndSpike], SourceModel, MCMC]

The object from which to plot a variable

required
**kwargs Any

Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in some specific plots but not applicable to all.

{}
Source code in src/pyelq/plotting/plot.py
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
def plot_single_trace(self, object_to_plot: Union[Type[SlabAndSpike], SourceModel, MCMC], **kwargs: Any):
    """Plotting a trace of a single variable.

    Depending on the object to plot it creates a figure which is stored in the figure_dict attribute.
    First it grabs all the specifics needed for the plot and then plots the trace.

    Args:
        object_to_plot (Union[Type[SlabAndSpike], SourceModel, MCMC]): The object from which to plot a variable
        **kwargs (Any): Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in
            some specific plots but not applicable to all.

    """
    plot_specifics = create_trace_specifics(object_to_plot=object_to_plot, **kwargs)

    burn_in = kwargs.pop("burn_in", 0)

    fig = go.Figure()
    fig = plot_single_scatter(
        fig=fig,
        x_values=plot_specifics["x_values"],
        y_values=plot_specifics["y_values"],
        color=plot_specifics["color"],
        name=plot_specifics["name"],
        burn_in=burn_in,
    )

    if burn_in > 0:
        fig.add_vline(
            x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
        )
    if isinstance(object_to_plot, SlabAndSpike) and isinstance(object_to_plot, SourceModel):
        prior_num_sources_on = round(object_to_plot.emission_rate.shape[0] * object_to_plot.slab_probability, 2)

        fig.add_hline(
            y=prior_num_sources_on,
            line_width=3,
            line_dash="dash",
            line_color="black",
            annotation_text=f"Prior sources 'on': {prior_num_sources_on}",
        )

    if self.layout is not None:
        fig.update_layout(template=self.layout)

    fig.update_layout(title=plot_specifics["title_text"])
    fig.update_xaxes(title_standoff=20, automargin=True, title_text=plot_specifics["x_label"])
    fig.update_yaxes(title_standoff=20, automargin=True, title_text=plot_specifics["y_label"])

    self.figure_dict[plot_specifics["dict_key"]] = fig

plot_trace_per_sensor(object_to_plot, sensor_object, plot_type, **kwargs)

Plotting a trace of a single variable per sensor.

Depending on the object to plot it creates a figure which is stored in the figure_dict attribute. First it grabs all the specifics needed for the plot and then plots the trace per sensor.

Parameters:

Name Type Description Default
object_to_plot Union[ErrorModel, PerSensor, MCMC]

The object which to plot a variable from

required
sensor_object Union[SensorGroup, Sensor]

Sensor object associated with the object_to_plot

required
plot_type str

String specifying a line or box plot.

required
**kwargs Any

Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in some specific plots but not applicable to all.

{}
Source code in src/pyelq/plotting/plot.py
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
def plot_trace_per_sensor(
    self,
    object_to_plot: Union[ErrorModel, PerSensor, MCMC],
    sensor_object: Union[SensorGroup, Sensor],
    plot_type: str,
    **kwargs: Any,
):
    """Plotting a trace of a single variable per sensor.

    Depending on the object to plot it creates a figure which is stored in the figure_dict attribute.
    First it grabs all the specifics needed for the plot and then plots the trace per sensor.

    Args:
        object_to_plot (Union[ErrorModel, PerSensor, MCMC]): The object which to plot a variable from
        sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the object_to_plot
        plot_type (str): String specifying a line or box plot.
        **kwargs (Any): Additional key word arguments, e.g. burn_in, legend_group, show_legend, dict_key, used in
            some specific plots but not applicable to all.

    """
    if isinstance(sensor_object, Sensor):
        temp = SensorGroup()
        temp.add_sensor(sensor_object)
        sensor_object = deepcopy(temp)
    plot_specifics = create_plot_specifics(
        object_to_plot=object_to_plot, sensor_object=sensor_object, plot_type=plot_type, **kwargs
    )
    burn_in = kwargs.pop("burn_in", 0)

    fig = go.Figure()
    for sensor_idx, sensor_key in enumerate(sensor_object.keys()):
        color_idx = sensor_idx % len(sensor_object.color_map)
        color = sensor_object.color_map[color_idx]

        if plot_specifics["plot_type"] == "line":
            fig = plot_single_scatter(
                fig=fig,
                x_values=plot_specifics["x_values"],
                y_values=plot_specifics["y_values"][sensor_idx, :],
                color=color,
                name=sensor_key,
                burn_in=burn_in,
            )
        elif plot_specifics["plot_type"] == "box":
            fig = plot_single_box(
                fig=fig,
                y_values=plot_specifics["y_values"][sensor_idx, burn_in:].flatten(),
                color=color,
                name=sensor_key,
            )

    if burn_in > 0 and plot_specifics["plot_type"] == "line":
        fig.add_vline(
            x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
        )

    if self.layout is not None:
        fig.update_layout(template=self.layout)

    fig.update_layout(title=plot_specifics["title_text"])
    fig.update_xaxes(title_standoff=20, automargin=True, title_text=plot_specifics["x_label"])
    fig.update_yaxes(title_standoff=20, automargin=True, title_text=plot_specifics["y_label"])

    self.figure_dict[plot_specifics["dict_key"]] = fig

plot_fitted_values_per_sensor(mcmc_object, sensor_object, background_model=None, burn_in=0)

Plot the fitted values from the mcmc object against time, also shows the estimated background when inputted.

Based on the inputs it plots the results of the mcmc analysis, being the fitted values of the concentration measurements together with the 10th and 90th quantile lines to show the goodness of fit of the estimates.

The created figure is stored in the figure_dict attribute.

Parameters:

Name Type Description Default
mcmc_object MCMC

MCMC object which contains the fitted values in the store attribute of the object.

required
sensor_object Union[SensorGroup, Sensor]

Sensor object associated with the object_to_plot

required
background_model TemporalBackground

Background model containing the estimated background.

None
burn_in int

Number of burn-in iterations to discard before calculating the quantiles and median. Defaults to 0.

0
Source code in src/pyelq/plotting/plot.py
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
def plot_fitted_values_per_sensor(
    self,
    mcmc_object: MCMC,
    sensor_object: Union[SensorGroup, Sensor],
    background_model: TemporalBackground = None,
    burn_in: int = 0,
):
    """Plot the fitted values from the mcmc object against time, also shows the estimated background when inputted.

    Based on the inputs it plots the results of the mcmc analysis, being the fitted values of the concentration
    measurements together with the 10th and 90th quantile lines to show the goodness of fit of the estimates.

    The created figure is stored in the figure_dict attribute.

    Args:
        mcmc_object (MCMC): MCMC object which contains the fitted values in the store attribute of the object.
        sensor_object (Union[SensorGroup, Sensor]): Sensor object associated with the object_to_plot
        background_model (TemporalBackground, optional): Background model containing the estimated background.
        burn_in (int, optional): Number of burn-in iterations to discard before calculating the quantiles
            and median. Defaults to 0.

    """
    if "y" not in mcmc_object.store:
        raise ValueError("Missing fitted values ('y') in mcmc_store_object")

    if isinstance(sensor_object, Sensor):
        temp = SensorGroup()
        temp.add_sensor(sensor_object)
        sensor_object = deepcopy(temp)

    y_values_overall = mcmc_object.store["y"]
    dict_key = "fitted_values"
    title_text = "Observations and Predicted Model Values Against Time"
    x_label = "Time"
    y_label = "Concentration (ppm)"
    fig = go.Figure()

    for sensor_idx, sensor_key in enumerate(sensor_object.keys()):
        plot_idx = np.array(sensor_object.sensor_index == sensor_idx)

        x_values = sensor_object[sensor_key].time
        y_values = y_values_overall[plot_idx, burn_in:]

        color_idx = sensor_idx % len(sensor_object.color_map)
        color = sensor_object.color_map[color_idx]

        fig = plot_quantiles_from_array(
            fig=fig, x_values=x_values, y_values=y_values, quantiles=[10, 90], color=color, name=sensor_key
        )

    if isinstance(background_model, TemporalBackground):
        fig = plot_quantiles_from_array(
            fig=fig,
            x_values=background_model.time,
            y_values=background_model.bg,
            quantiles=[10, 90],
            color="rgb(186, 186, 186)",
            name="Background",
        )

        fig.for_each_trace(
            lambda trace: (
                trace.update(showlegend=True, name="Background") if trace.name == "Median for Background" else ()
            ),
        )

    fig = sensor_object.plot_timeseries(fig=fig, color_map=sensor_object.color_map, mode="markers")

    fig.add_annotation(
        x=1,
        y=1.1,
        yref="paper",
        xref="paper",
        xanchor="left",
        yanchor="top",
        font={"size": 12, "color": "#000000"},
        align="left",
        showarrow=False,
        borderwidth=2,
        borderpad=10,
        bgcolor="#ffffff",
        bordercolor="#000000",
        opacity=0.8,
        text=(
            "<b>Point</b>: Real observation<br><b>Line</b>: Predicted Value<br><b>Shading</b>: " + "Quantiles 10-90"
        ),
    )

    if self.layout is not None:
        fig.update_layout(template=self.layout)

    fig.update_layout(title=title_text)
    fig.update_xaxes(title_standoff=20, automargin=True, title_text=x_label)
    fig.update_yaxes(title_standoff=20, automargin=True, title_text=y_label)

    self.figure_dict[dict_key] = fig

plot_emission_rate_estimates(source_model_object, y_axis_type='linear', **kwargs)

Plot the emission rate estimates source model object against MCMC iteration.

Based on the inputs it plots the results of the mcmc analysis, being the estimated emission rate values for each source location together with the total emissions estimate, which is the sum over all source locations.

The created figure is stored in the figure_dict attribute.

After the loop over all sources we add an empty trace to have the legend entry and desired legend group behaviour.

Parameters:

Name Type Description Default
source_model_object SourceModel

Source model object which contains the estimated emission rate estimates.

required
y_axis_type str

String to indicate whether the y-axis should be linear of log scale.

'linear'
**kwargs Any

Additional key word arguments, e.g. burn_in, dict_key, used in some specific plots but not applicable to all.

{}
Source code in src/pyelq/plotting/plot.py
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def plot_emission_rate_estimates(self, source_model_object, y_axis_type="linear", **kwargs: Any):
    """Plot the emission rate estimates source model object against MCMC iteration.

    Based on the inputs it plots the results of the mcmc analysis, being the estimated emission rate values for
    each source location together with the total emissions estimate, which is the sum over all source locations.

    The created figure is stored in the figure_dict attribute.

    After the loop over all sources we add an empty trace to have the legend entry and desired legend group
    behaviour.

    Args:
        source_model_object (SourceModel): Source model object which contains the estimated emission rate estimates.
        y_axis_type (str, optional): String to indicate whether the y-axis should be linear of log scale.
        **kwargs (Any): Additional key word arguments, e.g. burn_in, dict_key, used in some specific plots but not
            applicable to all.

    """
    total_emissions = np.nansum(source_model_object.emission_rate, axis=0)
    x_values = np.array(range(total_emissions.size))

    burn_in = kwargs.pop("burn_in", 0)

    dict_key = "estimated_values_plot"
    title_text = "Estimated Values of Sources With Respect to MCMC Iterations"
    x_label = "MCMC Iteration Number"
    y_label = "Estimated Emission<br>Values (kg/hr)"

    fig = go.Figure()

    fig = plot_single_scatter(
        fig=fig,
        x_values=x_values,
        y_values=total_emissions,
        color="rgb(239, 85, 59)",
        name="Total Site Emissions",
        burn_in=burn_in,
        show_legend=True,
    )

    for source_idx in range(source_model_object.emission_rate.shape[0]):
        y_values = source_model_object.emission_rate[source_idx, :]

        fig = plot_single_scatter(
            fig=fig,
            x_values=x_values,
            y_values=y_values,
            color="rgb(102, 197, 204)",
            name=f"Source {source_idx}",
            burn_in=burn_in,
            show_legend=False,
            legend_group="Source traces",
        )

    fig = plot_single_scatter(
        fig=fig,
        x_values=np.array([None]),
        y_values=np.array([None]),
        color="rgb(102, 197, 204)",
        name="Source traces",
        burn_in=0,
        show_legend=True,
    )

    if burn_in > 0:
        fig.add_vline(
            x=burn_in, line_width=3, line_dash="dash", line_color="black", annotation_text=f"\tBurn in: {burn_in}"
        )

    if self.layout is not None:
        fig.update_layout(template=self.layout)

    fig.add_annotation(
        x=1.05,
        y=1.05,
        yref="paper",
        xref="paper",
        xanchor="left",
        yanchor="top",
        align="left",
        font={"size": 12, "color": "#000000"},
        showarrow=False,
        borderwidth=2,
        borderpad=10,
        bgcolor="#ffffff",
        bordercolor="#000000",
        opacity=0.8,
        text=(
            "<b>Total Site Emissions</b> are<br>the sum of all estimated<br>"
            "emission rates at a given<br>iteration number."
        ),
    )

    fig.update_layout(title=title_text)
    fig.update_xaxes(title_standoff=20, automargin=True, title_text=x_label)
    fig.update_yaxes(title_standoff=20, automargin=True, title_text=y_label)
    if y_axis_type == "log":
        fig.update_yaxes(type="log")
        dict_key = "log_estimated_values_plot"
    elif y_axis_type != "linear":
        raise ValueError(f"Only linear or log y axis type is allowed, {y_axis_type} was currently specified.")

    self.figure_dict[dict_key] = fig

create_empty_mapbox_figure(dict_key='map_plot')

Creating an empty mapbox figure to use when you want to add additional traces on a map.

Parameters:

Name Type Description Default
dict_key str

String key for figure dictionary

'map_plot'
Source code in src/pyelq/plotting/plot.py
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
def create_empty_mapbox_figure(self, dict_key: str = "map_plot") -> None:
    """Creating an empty mapbox figure to use when you want to add additional traces on a map.

    Args:
        dict_key (str, optional): String key for figure dictionary

    """
    self.figure_dict[dict_key] = go.Figure(
        data=go.Scattermapbox(),
        layout={
            "mapbox_style": "carto-positron",
            "mapbox_center_lat": 0,
            "mapbox_center_lon": 0,
            "mapbox_zoom": 0,
            "mapbox_accesstoken": self.mapbox_token,
        },
    )

plot_values_on_map(dict_key, coordinates, values, aggregate_function=np.sum, **kwargs)

Plot values on a map based on coordinates.

Parameters:

Name Type Description Default
dict_key str

Sting key to use in the figure dictionary

required
coordinates LLA

LLA coordinates to use in plotting the values on the map

required
values ndarray

Numpy array of values consistent with coordinates to plot on the map

required
aggregate_function Callable

Function which to apply on the data in each hexagonal bin to aggregate the data and visualise the result.

sum
**kwargs Any

Additional keyword arguments for plotting behaviour (opacity, map_color_scale, num_hexagons, show_positions)

{}
Source code in src/pyelq/plotting/plot.py
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
def plot_values_on_map(
    self, dict_key: str, coordinates: LLA, values: np.ndarray, aggregate_function: Callable = np.sum, **kwargs: Any
):
    """Plot values on a map based on coordinates.

    Args:
        dict_key (str): Sting key to use in the figure dictionary
        coordinates (LLA): LLA coordinates to use in plotting the values on the map
        values (np.ndarray): Numpy array of values consistent with coordinates to plot on the map
        aggregate_function (Callable, optional): Function which to apply on the data in each hexagonal bin to
            aggregate the data and visualise the result.
        **kwargs (Any): Additional keyword arguments for plotting behaviour (opacity, map_color_scale, num_hexagons,
            show_positions)

    """
    map_color_scale = kwargs.pop("map_color_scale", "YlOrRd")
    num_hexagons = kwargs.pop("num_hexagons", None)
    opacity = kwargs.pop("opacity", 0.8)
    show_positions = kwargs.pop("show_positions", False)

    latitude_check, _ = is_regularly_spaced(coordinates.latitude)
    longitude_check, _ = is_regularly_spaced(coordinates.longitude)
    if latitude_check and longitude_check:
        self.create_empty_mapbox_figure(dict_key=dict_key)
        trace = plot_regular_grid(
            coordinates=coordinates,
            values=values,
            opacity=opacity,
            map_color_scale=map_color_scale,
            tolerance=1e-7,
            unit="",
        )
        self.figure_dict[dict_key].add_trace(trace)
    else:
        fig = plot_hexagonal_grid(
            coordinates=coordinates,
            values=values,
            opacity=opacity,
            map_color_scale=map_color_scale,
            num_hexagons=num_hexagons,
            show_positions=show_positions,
            aggregate_function=aggregate_function,
        )
        fig.update_layout(mapbox_accesstoken=self.mapbox_token, mapbox_style="carto-positron")
        self.figure_dict[dict_key] = fig

    center_longitude = np.mean(coordinates.longitude)
    center_latitude = np.mean(coordinates.latitude)
    self.figure_dict[dict_key].update_layout(
        mapbox={"zoom": 10, "center": {"lon": center_longitude, "lat": center_latitude}}
    )

    if self.layout is not None:
        self.figure_dict[dict_key].update_layout(template=self.layout)

plot_quantification_results_on_map(model_object, bin_size_x=1, bin_size_y=1, normalized_count_limit=0.005, burn_in=0, show_summary_results=True)

Function to create a map with the quantification results of the model object.

This function takes the ELQModel object and calculates the statistics for the quantification results. It then populates the figure dictionary with three different maps showing the normalized count, median emission rate and the inter-quartile range of the emission rate estimates.

Parameters:

Name Type Description Default
model_object ELQModel

ELQModel object containing the quantification results

required
bin_size_x float

Size of the bins in the x-direction. Defaults to 1.

1
bin_size_y float

Size of the bins in the y-direction. Defaults to 1.

1
normalized_count_limit float

Limit for the normalized count to show on the map. Defaults to 0.005.

0.005
burn_in int

Number of burn-in iterations to discard before calculating the statistics. Defaults to 0.

0
show_summary_results bool

Flag to show the summary results on the map. Defaults to True.

True
Source code in src/pyelq/plotting/plot.py
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
def plot_quantification_results_on_map(
    self,
    model_object: "ELQModel",
    bin_size_x: float = 1,
    bin_size_y: float = 1,
    normalized_count_limit: float = 0.005,
    burn_in: int = 0,
    show_summary_results: bool = True,
):
    """Function to create a map with the quantification results of the model object.

    This function takes the ELQModel object and calculates the statistics for the quantification results. It then
    populates the figure dictionary with three different maps showing the normalized count, median emission rate
    and the inter-quartile range of the emission rate estimates.

    Args:
        model_object (ELQModel): ELQModel object containing the quantification results
        bin_size_x (float, optional): Size of the bins in the x-direction. Defaults to 1.
        bin_size_y (float, optional): Size of the bins in the y-direction. Defaults to 1.
        normalized_count_limit (float, optional): Limit for the normalized count to show on the map.
            Defaults to 0.005.
        burn_in (int, optional): Number of burn-in iterations to discard before calculating the statistics.
            Defaults to 0.
        show_summary_results (bool, optional): Flag to show the summary results on the map. Defaults to True.

    """
    ref_latitude = model_object.components["source"].dispersion_model.source_map.location.ref_latitude
    ref_longitude = model_object.components["source"].dispersion_model.source_map.location.ref_longitude
    ref_altitude = model_object.components["source"].dispersion_model.source_map.location.ref_altitude

    datetime_min_string = model_object.sensor_object.time.min().strftime("%d-%b-%Y, %H:%M:%S")
    datetime_max_string = model_object.sensor_object.time.max().strftime("%d-%b-%Y, %H:%M:%S")

    result_weighted, _, normalized_count, count_boolean, enu_points, summary_result = (
        calculate_rectangular_statistics(
            model_object=model_object,
            bin_size_x=bin_size_x,
            bin_size_y=bin_size_y,
            burn_in=burn_in,
            normalized_count_limit=normalized_count_limit,
        )
    )

    polygons = create_lla_polygons_from_xy_points(
        points_array=enu_points,
        ref_latitude=ref_latitude,
        ref_longitude=ref_longitude,
        ref_altitude=ref_altitude,
        boolean_mask=count_boolean,
    )

    if show_summary_results:
        summary_trace = self.create_summary_trace(summary_result=summary_result)

    self.create_empty_mapbox_figure(dict_key="count_map")
    trace = plot_polygons_on_map(
        polygons=polygons,
        values=normalized_count[count_boolean].flatten(),
        opacity=0.8,
        name="normalized_count",
        colorbar={"title": "Normalized Count", "orientation": "h"},
        map_color_scale="Bluered",
    )
    self.figure_dict["count_map"].add_trace(trace)
    self.figure_dict["count_map"].update_layout(
        mapbox_accesstoken=self.mapbox_token,
        mapbox_style="carto-positron",
        mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
        title=f"Source location probability "
        f"(>={normalized_count_limit}) for "
        f"{datetime_min_string} to {datetime_max_string}",
        font_family="Futura",
        font_size=15,
    )
    model_object.sensor_object.plot_sensor_location(self.figure_dict["count_map"])
    self.figure_dict["count_map"].update_traces(showlegend=False)

    adjusted_result_weights = result_weighted.copy()
    adjusted_result_weights[adjusted_result_weights == 0] = np.nan

    median_of_all_emissions = np.nanmedian(adjusted_result_weights, axis=2)

    self.create_empty_mapbox_figure(dict_key="median_map")

    trace = plot_polygons_on_map(
        polygons=polygons,
        values=median_of_all_emissions[count_boolean].flatten(),
        opacity=0.8,
        name="median_emission",
        colorbar={"title": "Median Emission", "orientation": "h"},
        map_color_scale="Bluered",
    )
    self.figure_dict["median_map"].add_trace(trace)
    self.figure_dict["median_map"].update_layout(
        mapbox_accesstoken=self.mapbox_token,
        mapbox_style="carto-positron",
        mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
        title=f"Median emission rate estimate for {datetime_min_string} to {datetime_max_string}",
        font_family="Futura",
        font_size=15,
    )
    model_object.sensor_object.plot_sensor_location(self.figure_dict["median_map"])
    self.figure_dict["median_map"].update_traces(showlegend=False)

    iqr_of_all_emissions = np.nanquantile(a=adjusted_result_weights, q=0.75, axis=2) - np.nanquantile(
        a=adjusted_result_weights, q=0.25, axis=2
    )
    self.create_empty_mapbox_figure(dict_key="iqr_map")

    trace = plot_polygons_on_map(
        polygons=polygons,
        values=iqr_of_all_emissions[count_boolean].flatten(),
        opacity=0.8,
        name="iqr_emission",
        colorbar={"title": "IQR", "orientation": "h"},
        map_color_scale="Bluered",
    )
    self.figure_dict["iqr_map"].add_trace(trace)
    self.figure_dict["iqr_map"].update_layout(
        mapbox_accesstoken=self.mapbox_token,
        mapbox_style="carto-positron",
        mapbox={"zoom": 15, "center": {"lon": ref_longitude, "lat": ref_latitude}},
        title=f"Inter Quartile range (25%-75%) of emission rate "
        f"estimate for {datetime_min_string} to {datetime_max_string}",
        font_family="Futura",
        font_size=15,
    )
    model_object.sensor_object.plot_sensor_location(self.figure_dict["iqr_map"])
    self.figure_dict["iqr_map"].update_traces(showlegend=False)

    if show_summary_results:
        self.figure_dict["count_map"].add_trace(summary_trace)
        self.figure_dict["count_map"].update_traces(showlegend=True)
        self.figure_dict["median_map"].add_trace(summary_trace)
        self.figure_dict["median_map"].update_traces(showlegend=True)
        self.figure_dict["iqr_map"].add_trace(summary_trace)
        self.figure_dict["iqr_map"].update_traces(showlegend=True)

plot_coverage(coordinates, couplings, threshold_function=np.max, coverage_threshold=6, opacity=0.8, map_color_scale='jet')

Creates a coverage plot using the coverage function from Gaussian Plume.

Parameters:

Name Type Description Default
coordinates LLA object

A LLA coordinate object containing a set of locations.

required
couplings array

The calculated values of coupling (The 'A matrix') for a set of wind data.

required
threshold_function Callable

Callable function which returns some single value that defines the maximum or 'threshold' coupling. Examples: np.quantile(q=0.9), np.max, np.mean. Defaults to np.max.

max
coverage_threshold float

The threshold value of the estimated emission rate which is considered to be within the coverage. Defaults to 6 kg/hr.

6
opacity float

The opacity of the grid cells when they are plotted.

0.8
map_color_scale str

The string which defines which plotly colour scale should be used when plotting the values.

'jet'
Source code in src/pyelq/plotting/plot.py
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
def plot_coverage(
    self,
    coordinates: LLA,
    couplings: np.ndarray,
    threshold_function: Callable = np.max,
    coverage_threshold: float = 6,
    opacity: float = 0.8,
    map_color_scale="jet",
):
    """Creates a coverage plot using the coverage function from Gaussian Plume.

    Args:
        coordinates (LLA object): A LLA coordinate object containing a set of locations.
        couplings (np.array): The calculated values of coupling (The 'A matrix') for a set of wind data.
        threshold_function (Callable, optional): Callable function which returns some single value that defines the
                                     maximum or 'threshold' coupling. Examples: np.quantile(q=0.9),
                                     np.max, np.mean. Defaults to np.max.
        coverage_threshold (float, optional): The threshold value of the estimated emission rate which is
                                              considered to be within the coverage. Defaults to 6 kg/hr.
        opacity (float): The opacity of the grid cells when they are plotted.
        map_color_scale (str): The string which defines which plotly colour scale should be used when plotting
                               the values.

    """
    coverage_values = GaussianPlume(source_map=None).compute_coverage(
        couplings=couplings, threshold_function=threshold_function, coverage_threshold=coverage_threshold
    )
    self.plot_values_on_map(
        dict_key="coverage_map",
        coordinates=coordinates,
        values=coverage_values,
        aggregate_function=np.max,
        opacity=opacity,
        map_color_scale=map_color_scale,
    )

create_summary_trace(summary_result) staticmethod

Helper function to create the summary information to plot on top of map type plots.

We use the summary result calculated through the support functions module to create a trace which contains the summary information for each source location.

Parameters:

Name Type Description Default
summary_result DataFrame

DataFrame containing the summary information for each source location.

required

Returns:

Name Type Description
summary_trace Scattermapbox

Trace with summary information to plot on top of map type plots.

Source code in src/pyelq/plotting/plot.py
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
@staticmethod
def create_summary_trace(
    summary_result: pd.DataFrame,
) -> go.Scattermapbox:
    """Helper function to create the summary information to plot on top of map type plots.

    We use the summary result calculated through the support functions module to create a trace which contains
    the summary information for each source location.

    Args:
        summary_result (pd.DataFrame): DataFrame containing the summary information for each source location.

    Returns:
        summary_trace (go.Scattermapbox): Trace with summary information to plot on top of map type plots.

    """
    summary_text_values = [
        f"<b>Source ID</b>: {value}<br>"
        f"<b>(Lon, Lat, Alt)</b> ([deg], [deg], [m]):<br>"
        f"({summary_result.longitude[value]:.7f}, "
        f"{summary_result.latitude[value]:.7f}, {summary_result.altitude[value]:.3f})<br>"
        f"<b>Height</b>: {summary_result.height[value]:.3f} [m]<br>"
        f"<b>Median emission rate</b>: {summary_result.median_estimate[value]:.4f} [kg/hr]<br>"
        f"<b>2.5% quantile</b>: {summary_result.quantile_025[value]:.3f} [kg/hr]<br>"
        f"<b>97.5% quantile</b>: {summary_result.quantile_975[value]:.3f} [kg/hr]<br>"
        f"<b>IQR</b>: {summary_result.iqr_estimate[value]:.4f} [kg/hr]<br>"
        f"<b>Blob present during</b>: "
        f"{summary_result.absolute_count_iterations[value]:.0f} iterations<br>"
        f"<b>Blob likelihood</b>: {summary_result.blob_likelihood[value]:.5f}<br>"
        for value in summary_result.index
    ]

    summary_trace = go.Scattermapbox(
        lat=summary_result.latitude,
        lon=summary_result.longitude,
        mode="markers",
        marker=go.scattermapbox.Marker(size=14, color="black"),
        text=summary_text_values,
        name="Summary",
        hoverinfo="text",
    )

    return summary_trace

lighter_rgb(rbg_string)

Takes in an RGB string and returns a lighter version of this colour.

The colour is made lighter by increasing the magnitude of the RGB values by half of the difference between the original value and the number 255.

Parameters:

Name Type Description Default
rbg_string str

An RGB string.

required
Source code in src/pyelq/plotting/plot.py
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def lighter_rgb(rbg_string: str) -> str:
    """Takes in an RGB string and returns a lighter version of this colour.

    The colour is made lighter by increasing the magnitude of the RGB values by half of the difference between the
    original value and the number 255.

    Arguments:
        rbg_string (str): An RGB string.

    """
    rbg_string = rbg_string[4:-1]
    rbg_string = rbg_string.replace(" ", "")
    colors = rbg_string.split(",")
    colors_out = [np.nan, np.nan, np.nan]

    for i, color in enumerate(colors):
        color = int(color)
        color = min(int(round(color + ((255 - color) * 0.5))), 255)
        colors_out[i] = color

    return f"rgb({colors_out[0]}, {colors_out[1]}, {colors_out[2]})"

plot_quantiles_from_array(fig, x_values, y_values, quantiles, color, name=None)

Plot quantiles over y-values against x-values.

Assuming x-values have size N and y-values have size [N x M] where the second dimension is the dimension to calculate the quantiles over.

Will plot the median of the y-values as a solid line and a filled area between the lower and upper specified quantile.

Parameters:

Name Type Description Default
fig Figure

Plotly figure to add the traces on.

required
x_values Union[ndarray, DatetimeArray]

Numpy array containing the x-values to plot.

required
y_values ndarray

Numpy array containing the y-values to calculate the quantiles for.

required
quantiles Union[tuple, list, ndarray]

Values of upper and lower quantile to plot in range (0-100)

required
color str

RGB string specifying color for quantile fill plot.

required
name str

Optional string name to show in the legend.

None

Returns:

Name Type Description
fig Figure

Plotly figure with the quantile filled traces and median trace added on it.

Source code in src/pyelq/plotting/plot.py
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def plot_quantiles_from_array(
    fig: go.Figure,
    x_values: Union[np.ndarray, pd.arrays.DatetimeArray],
    y_values: np.ndarray,
    quantiles: Union[tuple, list, np.ndarray],
    color: str,
    name: str = None,
) -> go.Figure:
    """Plot quantiles over y-values against x-values.

    Assuming x-values have size N and y-values have size [N x M] where the second dimension is the dimension to
    calculate the quantiles over.

    Will plot the median of the y-values as a solid line and a filled area between the lower and upper specified
    quantile.

    Args:
        fig (go.Figure): Plotly figure to add the traces on.
        x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): Numpy array containing the x-values to plot.
        y_values (np.ndarray): Numpy array containing the y-values to calculate the quantiles for.
        quantiles (Union[tuple, list, np.ndarray]): Values of upper and lower quantile to plot in range (0-100)
        color (str): RGB string specifying color for quantile fill plot.
        name (str, optional): Optional string name to show in the legend.

    Returns:
         fig (go.Figure): Plotly figure with the quantile filled traces and median trace added on it.

    """
    color_fill = f"rgba{color[3:-1]}, 0.3)"

    median_trace = go.Scatter(
        x=x_values,
        y=np.median(y_values, axis=1),
        mode="lines",
        line={"width": 3, "color": color},
        name=f"Median for {name}",
        legendgroup=name,
        showlegend=False,
    )

    lower_quantile_trace = go.Scatter(
        x=x_values,
        y=np.quantile(y_values, axis=1, q=quantiles[0] / 100),
        mode="lines",
        line={"width": 0, "color": color_fill},
        name=f"{quantiles[0]}% quantile",
        legendgroup=name,
        showlegend=False,
    )

    upper_quantile_trace = go.Scatter(
        x=x_values,
        y=np.quantile(y_values, axis=1, q=quantiles[1] / 100),
        fill="tonexty",
        fillcolor=color_fill,
        mode="lines",
        line={"width": 0, "color": color_fill},
        name=f"{quantiles[1]}% quantile",
        legendgroup=name,
        showlegend=False,
    )

    fig.add_trace(median_trace)
    fig.add_trace(lower_quantile_trace)
    fig.add_trace(upper_quantile_trace)

    return fig

create_trace_specifics(object_to_plot, **kwargs)

Specification of different traces of single variables.

Provides all details for plots where we want to plot a single variable as a line plot. Based on the object_to_plot we select the correct plot to show.

Parameters:

Name Type Description Default
object_to_plot Union[Type[SlabAndSpike], SourceModel, MCMC]

Object which we want to plot a single variable from

required
**kwargs Any

Additional key word arguments, e.g. burn_in or dict_key, used in some specific plots but not applicable to all.

{}

Returns:

Name Type Description
dict dict

A dictionary with the following key/values: x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): Array containing the x-values to plot. y_values (np.ndarray): Numpy array containing the y-values to use in plotting. dict_key (str): String key associated with this plot to be used in the figure_dict attribute of the Plot class. title_text (str): String title of the plot. x_label (str): String label of x-axis. y_label (str) : String label of y-axis. name (str): String name to show in the legend. color (str): RGB string specifying color for plot.

Raises:

Type Description
ValueError

When no specifics are defined for the inputted object to plot.

Source code in src/pyelq/plotting/plot.py
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
def create_trace_specifics(object_to_plot: Union[Type[SlabAndSpike], SourceModel, MCMC], **kwargs: Any) -> dict:
    """Specification of different traces of single variables.

    Provides all details for plots where we want to plot a single variable as a line plot. Based on the object_to_plot
    we select the correct plot to show.

    Args:
        object_to_plot (Union[Type[SlabAndSpike], SourceModel, MCMC]): Object which we want to plot a single
            variable from
        **kwargs (Any): Additional key word arguments, e.g. burn_in or dict_key, used in some specific plots but not
            applicable to all.

    Returns:
        dict: A dictionary with the following key/values:
            x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): Array containing the x-values to plot.
            y_values (np.ndarray): Numpy array containing the y-values to use in plotting.
            dict_key (str): String key associated with this plot to be used in the figure_dict attribute of the Plot
                class.
            title_text (str): String title of the plot.
            x_label (str): String label of x-axis.
            y_label (str) : String label of y-axis.
            name (str): String name to show in the legend.
            color (str): RGB string specifying color for plot.

    Raises:
        ValueError: When no specifics are defined for the inputted object to plot.

    """
    if isinstance(object_to_plot, SourceModel):
        dict_key = kwargs.pop("dict_key", "number_of_sources_plot")
        title_text = "Number of Sources 'on' against MCMC iterations"
        x_label = "MCMC Iteration Number"
        y_label = "Number of Sources 'on'"
        emission_rates = object_to_plot.emission_rate
        if isinstance(object_to_plot, SlabAndSpike):
            total_nof_sources = emission_rates.shape[0]
            y_values = total_nof_sources - np.sum(object_to_plot.allocation, axis=0)
        elif object_to_plot.reversible_jump:
            y_values = np.count_nonzero(np.logical_not(np.isnan(emission_rates)), axis=0)
        else:
            raise TypeError("No plotting routine implemented for this SourceModel type.")
        x_values = np.array(range(y_values.size))
        color = "rgb(248, 156, 116)"
        name = "Number of Sources 'on'"

    elif isinstance(object_to_plot, MCMC):
        dict_key = kwargs.pop("dict_key", "log_posterior_plot")
        title_text = "Log posterior values against MCMC iterations"
        x_label = "MCMC Iteration Number"
        y_label = "Log Posterior<br>Value"
        y_values = object_to_plot.store["log_post"].flatten()
        x_values = np.array(range(y_values.size))
        color = "rgb(102, 197, 204)"
        name = "Log Posterior"

        if "burn_in" not in kwargs:
            warnings.warn("Burn in is not specified for the Log Posterior plot, are you sure this is correct?")

    else:
        raise ValueError("No values to plot")

    return {
        "x_values": x_values,
        "y_values": y_values,
        "dict_key": dict_key,
        "title_text": title_text,
        "x_label": x_label,
        "y_label": y_label,
        "name": name,
        "color": color,
    }

create_plot_specifics(object_to_plot, sensor_object, plot_type='', **kwargs)

Specification of different traces where we want to plot a trace for each sensor.

Provides all details for plots where we want to plot a single variable for each sensor as a line or box plot. Based on the object_to_plot we select the correct plot to show.

When plotting the MCMC Observations and Predicted Model Values Against Time plot we are assuming time axis is the same for all sensors w.r.t. the fitted values from the MCMC store attribute, so we are only using the time axis from the first sensor.

Parameters:

Name Type Description Default
object_to_plot Union[ErrorModel, PerSensor, MCMC]

Object which we want to plot a single variable from

required
sensor_object SensorGroup

SensorGroup object associated with the object_to_plot

required
plot_type str

String specifying either a line or a box plot.

''
**kwargs Any

Additional key word arguments, e.g. burn_in or dict_key, used in some specific plots but not applicable to all.

{}

Returns:

Name Type Description
dict dict

A dictionary with the following key/values: x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): Array containing the x-values to plot. y_values (np.ndarray): Numpy array containing the y-values to use in plotting. dict_key (str): String key associated with this plot to be used in the figure_dict attribute of the Plot class. title_text (str): String title of the plot. x_label (str): String label of x-axis. y_label (str): String label of y-axis. plot_type (str): Type of plot which needs to be generated.

Raises:

Type Description
ValueError

When no specifics are defined for the inputted object to plot.

Source code in src/pyelq/plotting/plot.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def create_plot_specifics(
    object_to_plot: Union[ErrorModel, PerSensor, MCMC], sensor_object: SensorGroup, plot_type: str = "", **kwargs: Any
) -> dict:
    """Specification of different traces where we want to plot a trace for each sensor.

    Provides all details for plots where we want to plot a single variable for each sensor as a line or box plot.
    Based on the object_to_plot we select the correct plot to show.

    When plotting the MCMC Observations and Predicted Model Values Against Time plot we are assuming time axis is the
    same for all sensors w.r.t. the fitted values from the MCMC store attribute, so we are only using the time axis
    from the first sensor.

    Args:
        object_to_plot (Union[ErrorModel, PerSensor, MCMC]): Object which we want to plot a single variable from
        sensor_object (SensorGroup): SensorGroup object associated with the object_to_plot
        plot_type (str, optional): String specifying either a line or a box plot.
        **kwargs (Any): Additional key word arguments, e.g. burn_in or dict_key, used in some specific plots but not
            applicable to all.

    Returns:
        dict: A dictionary with the following key/values:
            x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): Array containing the x-values to plot.
            y_values (np.ndarray): Numpy array containing the y-values to use in plotting.
            dict_key (str): String key associated with this plot to be used in the figure_dict attribute of the
                Plot class.
            title_text (str): String title of the plot.
            x_label (str): String label of x-axis.
            y_label (str): String label of y-axis.
            plot_type (str): Type of plot which needs to be generated.

    Raises:
        ValueError: When no specifics are defined for the inputted object to plot.

    """
    if isinstance(object_to_plot, ErrorModel):
        y_values = np.sqrt(1 / object_to_plot.precision)
        x_values = np.array(range(y_values.shape[1]))

        if plot_type == "line":
            dict_key = kwargs.pop("dict_key", "error_model_iterations")
            title_text = "Estimated Error Model Values"
            x_label = "MCMC Iteration Number"
            y_label = "Estimated Error Model<br>Standard Deviation (ppm)"

        elif plot_type == "box":
            dict_key = kwargs.pop("dict_key", "error_model_distributions")
            title_text = "Distributions of Estimated Error Model Values After Burn-In"
            x_label = "Sensor"
            y_label = "Estimated Error Model<br>Standard Deviation (ppm)"

        else:
            raise ValueError("Only line and box are allowed for the plot_type argument for ErrorModel")

        if "burn_in" not in kwargs:
            warnings.warn("Burn in is not specified for the ErrorModel plot, are you sure this is correct?")

    elif isinstance(object_to_plot, PerSensor):
        offset_sensor_name = list(sensor_object.values())[0].label
        y_values = object_to_plot.offset
        nan_row = np.tile(np.nan, (1, y_values.shape[1]))
        y_values = np.concatenate((nan_row, y_values), axis=0)
        x_values = np.array(range(y_values.shape[1]))

        if plot_type == "line":
            dict_key = kwargs.pop("dict_key", "offset_iterations")
            title_text = f"Estimated Value of Offset w.r.t. {offset_sensor_name}"
            x_label = "MCMC Iteration Number"
            y_label = "Estimated Offset<br>Value (ppm)"

        elif plot_type == "box":
            dict_key = kwargs.pop("dict_key", "offset_distributions")
            title_text = f"Distributions of Estimated Offset Values w.r.t. {offset_sensor_name} After Burn-In"
            x_label = "Sensor"
            y_label = "Estimated Offset<br>Value (ppm)"

        else:
            raise ValueError("Only line and box are allowed for the plot_type argument for PerSensor OffsetModel")

        if "burn_in" not in kwargs:
            warnings.warn("Burn in is not specified for the PerSensor OffsetModel plot, are you sure this is correct?")

    elif isinstance(object_to_plot, MCMC):
        y_values = object_to_plot.store["y"]
        x_values = list(sensor_object.values())[0].time
        dict_key = kwargs.pop("dict_key", "fitted_values")
        title_text = "Observations and Predicted Model Values Against Time"
        x_label = "Time"
        y_label = "Concentration (ppm)"
        plot_type = "line"

    else:
        raise ValueError("No values to plot")

    return {
        "x_values": x_values,
        "y_values": y_values,
        "dict_key": dict_key,
        "title_text": title_text,
        "x_label": x_label,
        "y_label": y_label,
        "plot_type": plot_type,
    }

plot_single_scatter(fig, x_values, y_values, color, name, **kwargs)

Plots a single scatter trace on the supplied figure object.

Parameters:

Name Type Description Default
fig Figure

Plotly figure to add the trace to.

required
x_values Union[ndarray, DatetimeArray]

X values to plot

required
y_values ndarray

Numpy array containing the y-values to use in plotting.

required
color str

RGB color string to use for this trace.

required
name str

String name to show in the legend.

required
**kwargs Any

Additional key word arguments, e.g. burn_in, legend_group, show_legend, used in some specific plots but not applicable to all.

{}

Returns:

Name Type Description
fig Figure

Plotly figure with the trace added to it.

Source code in src/pyelq/plotting/plot.py
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def plot_single_scatter(
    fig: go.Figure,
    x_values: Union[np.ndarray, pd.arrays.DatetimeArray],
    y_values: np.ndarray,
    color: str,
    name: str,
    **kwargs: Any,
) -> go.Figure:
    """Plots a single scatter trace on the supplied figure object.

    Args:
        fig (go.Figure): Plotly figure to add the trace to.
        x_values (Union[np.ndarray, pd.arrays.DatetimeArray]): X values to plot
        y_values (np.ndarray): Numpy array containing the y-values to use in plotting.
        color (str): RGB color string to use for this trace.
        name (str): String name to show in the legend.
        **kwargs (Any): Additional key word arguments, e.g. burn_in, legend_group, show_legend, used in some specific
            plots but not applicable to all.

    Returns:
        fig (go.Figure): Plotly figure with the trace added to it.

    """
    burn_in = kwargs.pop("burn_in", 0)
    legend_group = kwargs.pop("legend_group", name)
    show_legend = kwargs.pop("show_legend", True)
    if burn_in > 0:
        fig.add_trace(
            go.Scatter(
                x=x_values[: burn_in + 1],
                y=y_values[: burn_in + 1],
                name=name,
                mode="lines",
                line={"width": 3, "color": lighter_rgb(color)},
                legendgroup=legend_group,
                showlegend=False,
            )
        )

    fig.add_trace(
        go.Scatter(
            x=x_values[burn_in:],
            y=y_values[burn_in:],
            name=name,
            mode="lines",
            line={"width": 3, "color": color},
            legendgroup=legend_group,
            showlegend=show_legend,
        )
    )

    return fig

plot_single_box(fig, y_values, color, name)

Plot a single box plot trace on the plot figure.

Parameters:

Name Type Description Default
fig Figure

Plotly figure to add the trace to.

required
y_values ndarray

Numpy array containing the y-values to use in plotting.

required
color str

RGB color string to use for this trace.

required
name str

String name to show in the legend.

required

Returns:

Name Type Description
fig Figure

Plotly figure with the trace added to it.

Source code in src/pyelq/plotting/plot.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def plot_single_box(fig: go.Figure, y_values: np.ndarray, color: str, name: str) -> go.Figure:
    """Plot a single box plot trace on the plot figure.

    Args:
        fig (go.Figure): Plotly figure to add the trace to.
        y_values (np.ndarray): Numpy array containing the y-values to use in plotting.
        color (str): RGB color string to use for this trace.
        name (str): String name to show in the legend.

    Returns:
        fig (go.Figure): Plotly figure with the trace added to it.

    """
    fig.add_trace(go.Box(y=y_values, name=name, legendgroup=name, marker={"color": color}))

    return fig

plot_polygons_on_map(polygons, values, opacity, map_color_scale, **kwargs)

Plot a set of polygons on a map.

Parameters:

Name Type Description Default
polygons Union[ndarray, list]

Numpy array or list containing the polygons to plot.

required
values ndarray

Numpy array consistent with polygons containing the value which is used in coloring the polygons on the map.

required
opacity float

Float between 0 and 1 specifying the opacity of the polygon fill color.

required
map_color_scale str

The string which defines which plotly color scale.

required
**kwargs Any

Additional key word arguments which can be passed on the go.Choroplethmapbox object (will override the default values as specified in this function)

{}

Returns:

Name Type Description
trace Choroplethmapbox

go.Choroplethmapbox trace with the colored polygons which can be added to a go.Figure object.

Source code in src/pyelq/plotting/plot.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def plot_polygons_on_map(
    polygons: Union[np.ndarray, list], values: np.ndarray, opacity: float, map_color_scale: str, **kwargs: Any
) -> go.Choroplethmapbox:
    """Plot a set of polygons on a map.

    Args:
        polygons (Union[np.ndarray, list]): Numpy array or list containing the polygons to plot.
        values (np.ndarray): Numpy array consistent with polygons containing the value which is
                             used in coloring the polygons on the map.
        opacity (float): Float between 0 and 1 specifying the opacity of the polygon fill color.
        map_color_scale (str): The string which defines which plotly color scale.
        **kwargs (Any): Additional key word arguments which can be passed on the go.Choroplethmapbox object
            (will override the default values as specified in this function)

    Returns:
        trace: go.Choroplethmapbox trace with the colored polygons which can be added to a go.Figure object.

    """
    polygon_id = list(range(values.shape[0]))
    feature_collection = FeatureCollection([Feature(geometry=polygons[idx], id_value=idx) for idx in polygon_id])
    text_box = [
        f"<b>Polygon ID</b>: {counter:d}<br><b>Center (lon, lat)</b>: "
        f"({polygons[counter].centroid.coords[0][0]:.4f}, {polygons[counter].centroid.coords[0][1]:.4f})<br>"
        f"<b>Value</b>: {values[counter]:f}<br>"
        for counter in polygon_id
    ]

    trace_options = {
        "geojson": feature_collection,
        "featureidkey": "id_value",
        "locations": polygon_id,
        "z": values,
        "marker": {"line": {"width": 0}, "opacity": opacity},
        "hoverinfo": "text",
        "text": text_box,
        "name": "Values",
        "colorscale": map_color_scale,
        "colorbar": {"title": "Values"},
        "showlegend": True,
    }

    for key, value in kwargs.items():
        trace_options[key] = value

    trace = go.Choroplethmapbox(**trace_options)

    return trace

plot_regular_grid(coordinates, values, opacity, map_color_scale, tolerance=1e-07, unit='kg/hr', name='Values')

Plots a regular grid of LLA data onto a map.

So long as the input array is regularly spaced, the value of the spacing is found. A set of rectangles are defined where the centre of the rectangle is the LLA coordinate.

Parameters:

Name Type Description Default
coordinates LLA object

A LLA coordinate object containing a set of locations.

required
values array

A set of values that correspond to locations specified in the coordinates.

required
opacity float

The opacity of the grid cells when they are plotted.

required
map_color_scale str

The string which defines which plotly color scale should be used when plotting the values.

required
tolerance float

Absolute value above which the difference between values is considered significant. Used to calculate the regular grid of coordinate values. Defaults to 1e-7.

1e-07
unit str

The unit to be added to the colorscale. Defaults to kg/hr.

'kg/hr'
name str

Name for the trace to be used in the color bar as well

'Values'

Returns:

Name Type Description
trace Choroplethmapbox

Trace with the colored polygons which can be added to a go.Figure object.

Source code in src/pyelq/plotting/plot.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def plot_regular_grid(
    coordinates: LLA,
    values: np.ndarray,
    opacity: float,
    map_color_scale: str,
    tolerance: float = 1e-7,
    unit: str = "kg/hr",
    name="Values",
) -> go.Choroplethmapbox:
    """Plots a regular grid of LLA data onto a map.

    So long as the input array is regularly spaced, the value of the spacing is found. A set of rectangles are defined
    where the centre of the rectangle is the LLA coordinate.

    Args:
        coordinates (LLA object): A LLA coordinate object containing a set of locations.
        values (np.array): A set of values that correspond to locations specified in the coordinates.
        opacity (float): The opacity of the grid cells when they are plotted.
        map_color_scale (str): The string which defines which plotly color scale should be used when plotting
            the values.
        tolerance (float, optional): Absolute value above which the difference between values is considered significant.
                                     Used to calculate the regular grid of coordinate values. Defaults to 1e-7.
        unit (str, optional): The unit to be added to the colorscale. Defaults to kg/hr.
        name (str, optional): Name for the trace to be used in the color bar as well

    Returns:
        trace (go.Choroplethmapbox): Trace with the colored polygons which can be added to a go.Figure object.

    """
    _, gridsize_lat = is_regularly_spaced(coordinates.latitude, tolerance=tolerance)
    _, gridsize_lon = is_regularly_spaced(coordinates.longitude, tolerance=tolerance)

    polygons = [
        geometry.box(
            coordinates.longitude[idx] - gridsize_lon / 2,
            coordinates.latitude[idx] - gridsize_lat / 2,
            coordinates.longitude[idx] + gridsize_lon / 2,
            coordinates.latitude[idx] + gridsize_lat / 2,
        )
        for idx in range(coordinates.nof_observations)
    ]

    trace = plot_polygons_on_map(
        polygons=polygons,
        values=values,
        opacity=opacity,
        name=name,
        colorbar={"title": name + "<br>" + unit},
        map_color_scale=map_color_scale,
    )

    return trace

plot_hexagonal_grid(coordinates, values, opacity, map_color_scale, num_hexagons, show_positions, aggregate_function=np.sum)

Plots a set of values into hexagonal bins with respect to the location of the values.

Any data points that fall within the area of a hexagon are used to perform aggregation and bin the data. See: https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_hexbin_mapbox.html

Parameters:

Name Type Description Default
coordinates LLA object

A LLA coordinate object containing a set of locations.

required
values array

A set of values that correspond to locations specified in the coordinates.

required
opacity float

The opacity of the hexagons when they are plotted.

required
map_color_scale str

Colour scale for plotting values.

required
num_hexagons Union[int, None]

The number of hexagons which define the horizontal axis of the plot.

required
show_positions bool

A flag to determine whether the original data should be shown alongside the binning hexagons.

required
aggregate_function Callable

Function which to apply on the data in each hexagonal bin to aggregate the data and visualise the result.

sum

Returns:

Type Description
Figure

A plotly go figure representing the data which was submitted to this function.

Source code in src/pyelq/plotting/plot.py
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def plot_hexagonal_grid(
    coordinates: LLA,
    values: np.ndarray,
    opacity: float,
    map_color_scale: str,
    num_hexagons: Union[int, None],
    show_positions: bool,
    aggregate_function: Callable = np.sum,
):
    """Plots a set of values into hexagonal bins with respect to the location of the values.

    Any data points that fall within the area of a hexagon are used to perform aggregation and bin the data.
    See: https://plotly.com/python-api-reference/generated/plotly.figure_factory.create_hexbin_mapbox.html

    Args:
        coordinates (LLA object): A LLA coordinate object containing a set of locations.
        values (np.array): A set of values that correspond to locations specified in the coordinates.
        opacity (float): The opacity of the hexagons when they are plotted.
        map_color_scale (str): Colour scale for plotting values.
        num_hexagons (Union[int, None]): The number of hexagons which define the *horizontal* axis of the plot.
        show_positions (bool): A flag to determine whether the original data should be shown alongside
            the binning hexagons.
        aggregate_function (Callable, optional): Function which to apply on the data in each hexagonal bin to aggregate
            the data and visualise the result.

    Returns:
        (go.Figure): A plotly go figure representing the data which was submitted to this function.

    """
    if num_hexagons is None:
        num_hexagons = max(1, np.ceil((np.max(coordinates.longitude) - np.min(coordinates.longitude)) / 0.25))

    coordinates = coordinates.to_lla()

    hex_plot = ff.create_hexbin_mapbox(
        lat=coordinates.latitude,
        lon=coordinates.longitude,
        color=values,
        nx_hexagon=num_hexagons,
        opacity=opacity,
        agg_func=aggregate_function,
        color_continuous_scale=map_color_scale,
        show_original_data=show_positions,
        original_data_marker={"color": "black"},
    )

    return hex_plot